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PREFACE 

The solution of problems of dynamics involving motions of rigid 

bodies in spaceflight necessitates extensive use of various kinematical 

ideas, some of which have played such a small role in the development 

of technology prior to the advent of spaceflight that they have nearly 

disappeared from the modern literature. 

report to present a unified, modern treatment of the kinematical ideas 

that the authors believe to be most useful in dealing with problems 

of rigid bodies in spaceflight. 

It is the purpose of this 
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1.1 

1.1 Simple rotation 

Amotion of a rigid body or reference frame B relative to a rigid 

body or reference frame A is called a simple rotation - - -  of B in A if 

there exists a line L , 
relative to both A and B remains unaltered throughout the motion. 

This sort of motion is important because, as will be shown in Sec. 1.3, 

every change in the relative orientation of A and B can be produced 

by means of a simple rotation of B in A . 

called an -- axis of rotation, whose orientation 

If - a is any vector fixed in A (see Fig. 1.1.1), and - b is a 

vector fixed in B and equal to - a prior to the motion of B in A , 
then, when B has performed a simple rotation in A , can be ex- 

pressed in terms of the vector 5 , a unit vector parallel to L , 
and the radian measure 0 of the angle between two lines, LA and 

LB , which are fixed in A and B , respectively, are perpendicular 
to L , and are parallel to each other initially. Specifically, if 

0 is regarded as positive when the angle between LA and LB is gen- 

erated by a - A-rotation of LB relative to LA , that is, by a 
rotation during which a right-handed screw fixed in 

parallel to - X advances in the direction of - X when B rotates 

relative to A , then 

B with its axis 

b = a cos 0 - g x sin 8 4 - a AA(1 - cos 0 )  - -  

Equivalently, if a dyadic C is defined as 

c u cos e - u x A sin e + X X ( I  - cos e) - -  - -  I_ 

-1-  



1.1 

Figure 1.1.1 
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1.1 

where 1 is the unit (or identity) dyadic, then 

Derivations: Let cxl and cx2 be unit vectors fixed in A , with 
c1 parallel to LA and a = X X ; and let gl and g2 be unit -1 -2 
vectors fixed in B , with g1 parallel to LB and g2 = - x g1 3 as 

shown in Fig. 1.1.1. Then,if 5 and b are resolved into components 

parallel to cxl , g2 , - and 3 g2 9 - X , respectively, corre- 

sponding coefficients are equal to each other because cxl = g1 , -2 a = B  -2 , 
and - a = b when 0 = 0 . In other words, g and can be expressed as 

and 

where p , q , and r are constants. 

and cx2 , the unit vectors B and g2 -1 Expressed in terms of s1 
are given by 

$ = cos 8c1 + sin 9cx2 -1 -1 

and 

-3 - 



1.1 

B2 = -sin 0a + cos 0c2 -1 

so that, subst tuting into Eq. (b), one finds that 

- b = (p cos 0 - q sin 0)21+ (p sin 0 + q cos 0 ) c 2  + rA - 

The right-hand member of Eq. (e) is precisely what one obtains by carry- 

ing out the operations indicated in the right-hand member of Eq. (l), 

using Eq. (a), and making use of the relationships A x = a and 

p g 2 = -  21 Thus the validity of Eq. (1) is established; and Eq. ( 3 )  

follows directly from Eqs. (1) and ( 2 ) .  

-2 - 

Example: A rectangular block B having the dimensions shown in 

Fig. 1.1.2 forms a portion of an antenna structure mounted in a space- 

craft A . This block is subjected to a simple rotation in A about 

a diagonal of one face of B , the sense and amount of the rotation 

being those indicated in the sketch. The angle Q between the line OP 

in its initial and final positions is to be determined. 

-3 and a are unit vectors fixed in A and parallel If 21 Y 2 2  9 

to the edges of B prior to B ' s  rotation, then a unit vector - A 

directed as shown in the sketch can be expressed as 

And, if denotes the position vector of P relative to 0 prior to 

B ' s  rotation, then 

a = -2a + 4 z 3  -1 - 

-4 -  
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a -3 

3cm 

a -1 

Figure 1.1.2 
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1.1 

- 1 2 ~ ~  -+ 8s2 - 6a3 
5 a x  A '  - -  

and 

Consequently, if - b is the position vector of P relative to 0 sub- 

sequent to B ' s  rotation, 
* 

b (-2a + 4a3) cos -1 - 
(1) 

48a2 + 64s3 
25 

12s1 - 8s2 + 6g3 

5 sin ( ~ r / 6 )  (.rr/6) + 

- COS ( ~ / 6 ) ]  

=I -0.532~~ - 0.543~~ + 4.407~~ 

Since Cp is the angle between a and , 

lallb[ cos Cp = 

where lgl and lbl - denote the (equal) magnitudes of - a and b . Hence 

(-2)(-0.532) + 4(4.45)7) = o.935 cos 4 = I 

(4 + 16)z (4 + 16)F 

* 
Numbers beneath signs of equality are intended to direct attention 
to corresponding equations. 

- 6 -  



1.1 

and 

4 = 20.77 deg. 
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1.2 

1.2 Direct ion cosines 

If a1 9 iL2 9 -3 a and -1 b 3 -2 b 3 -3 b are two dex t r a l  s e t s  of 

( i , j  = 1,2,3), ca l l ed  ‘i j orthogonal un i t  vec tors ,  and nine quan t i t i e s  

d i r ec t ion  cosines ,  are defined as 

then the  two row matrices [ a  

other  as follows: 

a -1 -2 -3 a 3 and [bl p, h3] a re  r e l a t ed  t o  each 
* 

where C i s  a square matr ix  defined as 

C I ‘21 ‘22 ‘231 

1‘31 ‘32 ‘33 

I f  a superscr ip t  T i s  used t o  denote t ranspos i t ion ,  t ha t  is, 

CT i s  defined as 

‘21 ‘31 
CT - 1‘12 ‘22 ‘32 

I 

[‘13 ‘23 ‘33 

(3) 

- ~- ~ 

* The t e r m  “matrix” i s  here used i n  an extended sense. 
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1.2 

then Eq. (2) can be replaced with the equivalent re la t ionship  

[al g2 s31 = [ b  -1 -2 b -3 b ]  CT (5) 

The matrix C , ca l l ed  a d i r ec t ion  cosine matrix , can be employ- 

ed t o  descr ibe the r e l a t i v e  or ien ta t ion  of two reference frames or  

r i g i d  bodies A and B . In  t h a t  context,  i t  can be advantageous t o  

replace the symbol C with the more elaborate  symbole ACB . In  view 

of Eqs. (2) and (5), one must then regard the  interchanging of super- 

s c r i p t s  as s ign i fy ing  t ranspos i t ion ;  t h a t  i s ,  

The d i r ec t ion  cosine matrix C plays a r o l e  i n  a number of useful  

re la t ionships .  

(i = 1 ,2 ,3 )  are defined as 

For example, i f  1 i s  any vector and Av and B ~ i  i 

= v , a  (i = 1,2,3) -i - i 

and 

(i = 1 ,2 ,3 )  a Bv = v . b  
-i - i 

A while v and Bv denote the  row matrices having the  elements 

(7) 
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1.2 

respectively, then B B B 
A and v1 Y v2 9 v3 Y 

A 
VI Y v2 , v3 A 

B A. v = v c  (9) 

Similarly, if 2 is any dyadic, and % ij and BD ij (i,j = 1,2,3) 

are defined as 

and 

(i,j = 1,2,3) A BD = b * D e b  
ij -i - -j 

while AD and BD denote square matrices having % ij and BDij , 

respectively, as the elements in the i row and j column, then 
th th 

Use of the summation convention for repeated subscripts frequently 

makes it possible to formulate important relationships rather concisely. 

For example, if is defined as 6ij 

A 1 2 2 
= 1 - (i - j) [ 5  - (i - j) 1 (i, j = 1,2,3) 6i j 

-10- 



1.2 

s o  t h a t  6 i j  

value,  and equal t o  zero when the subscr ip ts  have d i f f e r e n t  values ,  

then use of the summation convention permits one t o  express a s e t  of 

s i x  r e l a t ionsh ips  governing d i r ec t ion  cosines as 

i s  equal t o  uni ty  when the  subscr ip ts  have the same 

o r  an equivalent se t  as 

( i , j  = 1 , 2 , 3 )  

( i , j  = 1,2,3) 

Alternat ively,  these re la t ionships  can be s t a t e d  i n  matrix form as 

C C T  = u 

and 

C T O  = u 

where U denotes the  un i t  (o r  i den t i ty )  matrix,  defined as 

u =  0 1 0  [: :] 
Each element of the matrix C i s  equal t o  i t s  cofactor  i n  the  

determinant of C ; and, i f  I GI denotes t h i s  determinant, then 

-11- 



1.2 

Consequently, C i s  an orthogonal matrix,  t h a t  i s ,  a matrix whose 

inverse and whose transpose a re  equal t o  each other. Moreover, 

Hence uni ty  i s  an eigenvalue of every d i r ec t ion  cosine matrix. In  

other words, f o r  every d i r ec t ion  cosine matrix C there  e x i s t  row 

matrices [ K  K K ] , ca l l ed  eigenvectors,  which s a t i s f y  the 

equation 

1 2 3  

Suppose now tha t  a.  and b (i = 1,2,3) a re  f ixed i n  reference 
-1 -i 

frames or r i g i d  bodies A and B y  respec t ive ly ,  and tha t  B i s  sub- 

jec ted  t o  a simple r o t a t i o n  i n  A ( see  See. 1.1); fu r the r ,  t h a t  

a.  = b.  (i  = 1,2,3) pr io r  t o  the  ro t a t ion ,  t h a t  h - and 0 a re  

defined as i n  Sec. 1.1, and tha t  1 is  defined as 

-1 -1 

i 

A 
(i = 1,2,3) - h i - h .  a .  = A .  -1 b. 

-1- 

Then the elements of C a r e  given by 
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1 .2  

= cos  e + 2(1 - cos  e) 
cll 1 

13 = h2 s i n  8 + h3 h l ( l  - cos  e )  (25) 

= h3 s i n  8 + h l  h2(1  - cos  e) c21 

= cos  e + h 2(1  - cos  e)  c22 2 

'23 = - h l  s i n  8 + h 2  h 3 ( l  - cos  e )  (28) 

2 c33 = cos  e I- h (1 - cos  e) 3 

Eqs. (23) - (31) can be expressed more conc i se ly  a f t e r  def in ing  

as 'i jk 

4 ( i - j ) ( j - k ) ( k - i )  ( i , j , k  = 1 , 2 , 3 )  ' i jk  2 

(The quantity vanishes when two or three subscr ipts  have the i jk 

-13- 



1.2 

same value; it is equal to unity when the subscripts appear in 

cyclic order, that is, in the order 1,2,3, the order 2,3,1, or 

the order 3,1,2; and it is equal to negative unity in all other 

cases.) Using the summation convention, one can then replace Eqs. 

(24) - .(31) with 

can be expressed in terms of the dyadic C ‘i j Alternatively, 

defined in Eq. (1.1.2): 

Cij = -1 a.. gj. - C (i,j = 1,2,3) (34) 

All of these results simplify substantially when is parallel 

to ai, and hence to b (i = 1,2,3). If C.(e) denotes C for 

h_=ai=b -i 9 then 
-i 1 

0 

I o sin e cos 0 1  
L 

- 14- 



1.2 

cos e -sin 8 1 

0 1 

C 3 ( e )  = r 1 sin 8 COS e 0 

L 

It was mentioned previously that unity is an eigenvalue of every 

direction cosine matrix. If the elements of a direction cosine 

matrix C are given by Eqs. (23) - ( 3 1 ) ,  then the row matrix 

[A A A ] is one of the eigenvectors corresponsing to the eigen- 

value unity of C ; that is, 
1 2 3  

Equivalently, when C is the dyadic defined in Eq. ( 1 . 1 . 2 ) ,  then 

h , .  C = h _  

Derivations: For any vector 1 , the following is an identity: 

- v = (zl l )al  + (s2 9 g 2  + <g3 x)g3 

Hence, letting b play the rsle of v, one can express b as -1 -1 

(37) 

(39) 
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1.2 

S i m i  lar l y  

and 

These three  equations a r e  prec ise ly  what one obtains  when forming 

expressions f o r  bl , b2 k3 i n  accordance with Eq. (2) and with 

the ru l e s  f o r  matr ix  mul t ip l ica t ion ;  and a similar l i n e  of reasoning 

leads t o  Eq. (5). 

To see  tha t  Eq. (9) i s  va l id  one needs only t o  observe tha t  

- - v . (al Cli + g2 C2i + a C ) B 
- -3 3 i  

(8 9 2) 
vi 
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1.2 

A A c + v2 c2i + v3 c3i - - 
1 li 

(7) 

and to recall the definitions of ‘v and Bv . Similarly, Eq. (12) 

follows from 

and from the definitions of AD and BD . 
As for Eqs. (14) and (15), these are consequences of (using the 

summation convention) 

- (i,j = 1,2,3) a. . a - ‘ik ‘jk 
-j (1,5) 

and 

(i,j = 1,2,3) ‘ki ‘kj b . b  = 
-i -j 

-17- 



1.2  

respec t ive ly ,  because a . a is  equal t o  uni ty  when i = j , and 

equal t o  zero when i # j , and s imi l a r ly  f o r  b . b ; and Eqs. (16) 

and (17) can be seen t o  be equivalent t o  Eqs. (14) and (15), respect-  

i ve ly ,  by r e f e r r i n g  t o  Eqs. ( 3 ) ,  ( 4 ) ,  and (18) when carrying out t he  

indicated mul t ip l ica t ions .  

i -j 

-i -j 

To v e r i f y  t h a t  each elem.ent of Z i s  equal t o  i t s  cofactor  i n  

the  determinant of C , note  t h a t  

b -1 

and 

- C  C ) a  (‘32‘13 12  33 -2 

s o  t h a t ,  s ince  b = k2 x k3 because b b form a dex t r a l  

se t  of orthogonal un i t  vectors ,  

-1 -1 9 -2 3 k3  

= c  c - c  c ‘11 22 33 32  23 

‘21 = ‘32‘13 - ‘12‘33 

-18- 



1 .2  

and 

C g 1 = C  c - c  c 12 23 22 13 

Thus each element i n  the  f i r s t  column of C (see Eq. ( 3 ) )  is  seen t o  

be equal t o  i t s  cofactor  i n  C ; and, using the  re la t ionships  

k2 = k3 x k1 
f o r  t he  elements i n  the  second and t h i r d  columns of C . Furthermore, 

expanding C by cofac tors  of elements of the  f i r s t  row, and using Eq. 

(14) with i = j = 1 , one a r r ives  a t  Eq. (19). 

and k3 = bl x k2 , one obtains  corresponding r e s u l t s  

The determinant of C - U can be expresses as 

- (‘11‘22 ‘22‘33 i- ‘33‘11) - 

Hence, replacing Cll , C22 , and C33 with  t h e i r  respect ive cofac tors  

i n  IC 1, one f inds  t h a t  

i n  agreement wi th  Eq. (20); and t h e  exis tence of row matrices 

[ K  K K ] sa t i s fy ing  Eq. (21) i s  thus guaranteed. 
1 2 3  

-19- 



1.2 

The equality of h . a and A . b in Eq. (22) is a consequence i i 

of the fact that these two quantities are equal to each other prior 

to the rotation of B relative to A , that is, when = b and 

that neither zi nor h . ki changes during the rotation, since, 
by construction, is parallel to a line whose orientation in both 

A and B remains unaltered during the rotation. 

i’ 

With 5 and replaced by a and b respectively, Eq. (1.1.3) 
-j -j 

becomes 

b = a  . C  
-j -j - 

Hence 

which is Eq. (34). Moreover, substituting for s the expression given 

in Eq. (1.1.2), one finds that 

= a. . a cos 8 - a. . a xh_ sin 8 +ai . LA . a (1 - cos 0 )  -j cij -1 -j -1 -j -- 

(i,j = 1 , 2 , 3 )  

and this, together with Eq. (22) leads directly to Eqs. (23) - (31), or, 

in view of Eq. (32), to Eq. (33). 

-20- 



1.2 

Eq. (35) i s  obtained by s e t t i n g  = 1 and h 2  = A 3  = 0 i n  
i 

Eqs. (23) - (31) and then using Eq. (3). Similar ly ,  

and h 3 = 0 lead t o  Eq. ( 3 6 ) ,  and h 1 = A 2  = 0 , A 3  = 1 y ie ld  Eq. (37). 

= 0 , h 2  = 1 , 

* 
Fina l ly ,  Eq. (39) i s  derived from the  observation t h a t  

2 h 5 = h FCOS €! - h . Lsin e + ~ ( l  - cos 0 )  - - 
(1.1.2) 

= - A cos e + 0 + L(1 - cos 0 )  = L 

211 s ince  L is  a un i t  vector ,  s o  t h a t  = B .  h, = 1 ; and the  equivalence 

of Eqs. (38) and (39) follows from Eqs. (22) and (34). 

Example: I n  Fig. 1.2.1, B designates  a uniform rectangular  

block which is  pa r t  of a scanning platform mounted i n  a spacecraf t  A . 
I n i t i a l l y ,  t he  edges of B are p a r a l l e l  t o  u n i t  vectors  gl , z2 and 

which are f ixed  i n  A , and the  platform i s  then subjected t o  a 

simple ninety degree r o t a t i o n  about a diagonal of B , as indicated i n  

the  sketch. I f  2 i s  the  i n e r t i a  dyadic of B f o r  t he  mass center  

B of B , and *Iij i s  defined as 

23 

* 

( i , j  = 1,2,3) 
A 

A~ = a  . ~ . a  
i j  -i - -j 

what i s  the  value of AI ( i , j  = 1,2,3) subsequent t o  the  ro t a t ion?  
i j  

* When i t  is  necessary t o  r e f e r  t o  an equation from an e a r l i e r  sec t ion ,  
the sec t ion  number is  c i t e d  together  with the equation number. For 
example, (2.3.4) r e f e r s  t o  Eq. (4) i n  Sec. 2.3. 

-21- 
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a -3 A 

LT. G 
goo 

12L 

Figure 1.2.1 
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1.2 

L e t  l+ (i = 1 , 2 , 3 )  be a u n i t  vector  f ixed  i n  B and equal t o  

as 
B 
Ii j a (i = 1 , 2 , 3 )  p r i o r  t o  t h e  r o t a t i o n ;  and d e f i n e  -i 

( i , j  = 1,2,3) 
h 

BI = b . . h . b  
i j  -1 -j 

Then tq , b , and b a r e  p a r a l l e l  t o  p r i n c i p a l  axes of i n e r t i a  of 

B f o r  B , s o  t h a t  

-2 -3 * 

BI12 = BIql  = B123 - - B 132 = B 131 = BI13 = 0 

and, i f  m i s  t h e  mass of B , 

2 2 2  25 2 = E  (3 + 4  )L  = - r n ~  
B122 12  1 2  

and 

2 2 2 160 2 =!E ( 4  + 12 )L = X m L  I33 1 2  

Hence, i f  BI denotes t h e  square ma t r ix  having BI as the  element 

i n  t h e  ith row and jth column, then 

i j  

I- 1 

0 0 60j 

-23- 



1.2 

The unit vector shown in Fig. 1 . 2 . 1  can be expressed as 

4 1 2  3 4Sl + 12s2 + 3s3 

(42 + 122 + 3 3 4  
= - a + - a $  13 -1 13 -2 i 3  5 3  A =  - 

Consequently, h l  , h 2  , and h 3 ’  ~ if defined as in Eq. (22), are 

given by 

and, with 8 = rr/2 rad . , Eqs. (23)  - (31) lead to the following 
expression for the direction cosine matrix C : 

A 
as the A If I is now defined as the square matrix having Iij 

th element in the i th row and j column, then 

and simultaneous pre-multiplication with C and post-multiplication 
T with C gives 

-24-  



1.2 

(d) 
A A c BI CT = c CT AI c CT = u I U =  I 

(c) (16,171 

Consequently, 

4557033 -184604 -92792 

-92792 -1623034 3379168 1 2 - mL - 
12 x 169 x 169 - 184604 1717417 -1623024 

and 

- 4557033 mL2 - 
12 x 169 x 169 

- 184604 mL2 - 
A112 - 12 x 169 x 169 

and so forth. 

-25- 



1.3 

1.3 Euler parameters 

The unit vector - X and the angle 0 introduced in Sec. 1.1 can 

be used to associate a vector E called the Euler vector, and four 

scalar quantities, E1,".¶E4 ¶ called Euler parameters, with a simple 

rotation of a rigid body B in a reference frame A by letting 

and 

A - -  E = h sin- (0/2) 

E = ~ * a . = , * b .  a 
i -  -3. -1 

4 cos (8 /2)  &4 

(i = 1,2,3) 

(3) 

where a a and hl , b b are dextral sets of orthog- 

onal unit vectors fixed in A and B respectively, with a = b. i -3. 

(i = 1,2,3) 

than two bodies or reference frames, notations such as AzB and *E 

will be used.) 

-1 3 22 3 -3 -2 -3 

prior to the rotation. (Where a discussion involves more 

i 

The Euler parameters are not independent of each other, for the 

sum of their squares is necessarily equal to unity: 

& 2 + E 2 2 + &  2 + E 4  2 2  = E  + E 4  2 = 1  
1 3 (4) 

An indication of the utility of the Euler parameters may be gleaned 

from the fact that the elements of the direction cosine matrix C intro- 

duced in Sec. 1.2 assume a particularly simple and orderly form when 

-26-  
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If C.. is defined as 
4 .  13 

expressed in terms of 

Cij = a % kj (i = 1 , 2 , 3 )  

then 

2 - 2E3 + E 4  
= 1 - 2E2 cll = €1 - &2 - &3 

2 2 2 2 

C12 = 2(E1E2 - E E ) 3 4  

= 2(E E + E2E4) ‘13 3 1  

= 2(E1E2 + E3E4) c21 

2 2 2 2E3 2 - 2E1 2 c22 = E2 - E3 - El + E42 = 1 - 

= 2(E2E3 - E E ) ‘23 1 4  

Cg1 = 2(E3E1 - E E ) 2 4  

2 - 2E2 c33 = E3 - El - E2 + E 4  = 1 - 2E1 2 2 2 2 2 

(5) 

The Euler parameters can be repressed in terms of direction cosines 

in such a way that Eqs. (6) - (14) are satisfied identically. This is 

accomplished by taking 

-27- 



1.3 

- ‘32 - ‘23 
4E4 

2 4E4 

El - 

‘13 - ‘31 
E =  

- ‘21 - ‘12 
4 &3 - 4 E  

and 

1 .- = - 1 (1 + Cll + c22 + c33)2 
€ 4  2 

Since Eqs. (1) and (3) are satisfied if 

& a  1-1 + € a  2-2 +&,a_? 
2 2 -  x -  - 

(E1 + E22 + E3 

and 

one can thus find a simple rotation such that the direction cosines 

associated with this rotation as in Eqs. (1.2.23) - (1.2.31) are equal 

to corresponding elements of any direction cosine matrix that sat- 

isfies Eq. (1.2.2). In other words, every change in the relative 

orientation of two rigid bodies or reference frames A and B can be 

produced by means of a simple rotation of B in A . This proposition 

is known as Euler’s Theorem on rotation. 

C 

- 
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As an alternative to Eqs. (1.1.1) and (1.1.3), the relationship be- 

tween a vector g fixed in a reference frame A and a vector fixed 

in a rigid body B and equal to 5 prior to a simple rotation of B in 

A can be expressed in terms of 5 and E as 4 

Derivations: The equality of E a and E b. [see Eq. (2jl 
--i - -i - 

follows from Eqs. (1) and (1.2.22); Eqs. (4) are consequences of Eqs. 

(I) - (3) and of the fact that - X is a unit vector; and Eqs. ( 6 )  - (14) 
can be obtained from Eqs. (1.2.23) - (1.2.31) by replacing functions of 

0 with functions of 0/2 and using Eq. (1.2.22) together with Eqs. (1) 

Y (4). For example, 

and 

& - a  - -1 - = X a sin (8/2) = 
(2) (1) - - -1 hl sin (0/2) 

(1.2.22) 

while 

cos (0/2) = E4 
(3) 

Hence 

Cll = 2c4 - 1 + 2E12 = El 2 - E2 2 - E3 2 + E4 2 
(4 1 
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in agreement with Eq. (1). 

The validity of Eqs. (15) - (18) can be established by showing 

that the left-hand members of Eqs. ( 6 )  - (14) may be obtained by sub- 

stituting from Eqs. (15) - (18) into the right-hand members. For 

example, 

2 
3 1 - 2c22 - 2E 

I T b  1: (1.2.14) 

But, since each element of C is equal to its cofactor in I C 1  , 

‘13‘31 = ‘11‘33 - ‘22 

and 

‘12‘21 = ‘11‘22 - ‘33 

Consequently 

2 
‘11 ‘11‘33 ‘11‘22 + ‘11 

= ‘11 
2 -  - - 2E3 1 - 2E2 

+ ‘11 + ‘22 + ‘33 

2 

as required by Eq. ( 6 ) .  

To see that Eqs.  (1) and ( 3 )  are satisfied if - A and 6 are given 
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by Eqs. (19) and (20), note that 

which is Eq. (3) ,  and that 

so that 

as required by Eq. (1). Finally, Eq. (1.1.1) is equivalent to 

b = a + A x a sin 8 + A x (A - -  x a)(l - cos e )  - - - -  - 

in agreement with Eq. (21). 

Example: Triangle ABC in Fig. 1.3.1 can be brought into the 

position A'B'C' by moving point A to A' without changing the 

orientation of the triangle and then performing a simple rotation of 

the triangle while keeping A fixed at A' . To find A ,  a unit 
vector parallel to the axis of rotation, and to determine e , the 
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A '  

L 

b -2 

-3 

B' B 

L 

-1 

___). a -3 

Figuze 1.3.1 
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associated angle of rotation, let 

(i = 1,2,3) be directed as shown 

the unit vectors % and % 
in Fig. 1.3.1, thus insuring that 

a+ = b+ (i = 1,2,3) prior to the rotation; determine C.. by 

evaluating a b ; and use Eqs. (15) - (18) to form ci (i = 1, ..., 4): 
1J 

-i -j 

1 
b )F 
-3 

~ ~ ( 1 + O f O + O ) ~  1 “ 1  = y  

a * b  - a  * b  1 - 0  -3 -2 -2 -3 = 
4 (1/2) 2 2 (15) 

a * b  - a  * b  - 1 - 0  
3 - -  

- -2 -1 -1 -2 = 
4 (1/2) 2 2 

- 
E3 (17) 

Then 

and 

-1 0 = 2 cos (1/2) = 2 ~ / 3  rad. 
(20) 
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1.4 Rodrimes parameters 

A vector 2 , 
quantities, p1 , p 2  , 
associated with a simple rotation of a rigid body 

frame A (see Sec. 1.1) by letting 

called the Rodrigues vector, and three scalar 

called Rodrigues parameters, can be p3  ’ 
B in a reference 

and 

n 
Pi - p % = p 3 (i = 1,2,3) 

where - A and 0 have the same meaning as in Sec. 1.1, and sl , z2 , 
a and , k2 3 -3 b are dextral sets of orthogonal unit vectors -3 
fixed in A and B respectively, with si = b (i = 1,2,3) prior -i 
to the rotation. 

reference frames, notations such as 

(When a discussion involves more than two bodies or 

and A pi will be used.) 

The Rodrigues parameters are intimately related to the Euler 

parameters (see Sec. 1.3): 

E 

(i = 1,2,3) i Pi = - 
&4 

(3) 

An advantage of the Rodriguesparameters over the Euler parameters is 

that they are fewer in number; but this advantage is at times offset by 

the fact that the Rodriguesparameters can become infinite, whereas the 

absolute value of any Euler parameter cannot exceed unity. 
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Expressed in terms of Rodrigues parameters, the direction cosine 

matrix C (see Sec. 1.2) assumes the form 

2 2 21 
1 + P 3  - P 1  - P Q l  

I 
I 

L -1 

2 2 2 
C =  ( 4 )  

1 + P1 + P 2  + P3 

The Rodrigues vector can be used to establish a simple relationship 

between the difference and the sum of the vectors a and b defined in 

Sect. 1.1: 

- - 

This relationship will be found useful in connection with a number of 

deviations, such as the one showing that the following is an expression 

for a Rodriguesvector that characterizes a simple rotation by means of 

which a specified change in the relative orientation of A and B can 

be produced: 

and % (i = 1,2) are vectors fixed in A and B , re- where 

spectively, and si = & (i = 1,2) prior to the change in relative 

orientation. 

% 

Rodrigues parameters for such a rotation can be expressed as 
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‘31 ‘13 
p 1  = c21 - C12 

‘12 + c21 
02 = c32 - c23 

p =  ‘23 -I- ‘32 
‘12 - ‘31 

(7 1 

Derivat ions:  The e q u a l i t y  of 2 zi and e [see Eq. (211 

follows from Eqs. (1) and (1.2.22); and Eqs. (3) are obtained by not ing  t h a t  

& 

E 

- - t a n  (8/2) = - p 
4 (1.3.1,l. 3.3) (1 1 

- 

so t h a t  

E 

( i  = 1,2,3) i 

pi (2) ‘4  (1.3.2) ‘4 

- €*a+ - = =: 

From Eq. (1.3.4) 

2 2 2 2 2 + P2 2 + P32 + 1)Eq 2 
= (PI 

+ E 4  (3) 
1 = El + E2 + E3 

Hence 

&42 = 
1 - 

2 2 2 
1 + Pl + P2 + P3 

and 
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2 2 2 2 
+ &4 - € 1 - 2 -  3 

- 
(1.3.6) 

2 2  2 2  2 2  2 = P1 E4 - P 2  E4 - P3 E 4  + E4 
( 3 )  

P I  2 - P 2  2 - P 3  2 + 1  

2 2 2 
= (P1 2 - P2 2 - cJ3 + 1)E42 = 

1- + P1 + P 2  + P3 

in agreement with Eq. ( 4 )  and the remaining elements of C are found 

similarily. 

As for Eq. (5), note that cross-multiplication of Eq. (1.3.21) with 

- E yields 

Now 

(1.3.4) 

Consequently 

and 
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which is Eq. (5). 

Eq. (6) can now be obtained by observing that 

and 

a - B = (g2 +E2)  x p  
-2 -z (5) 

so that 

from which Eq. (6) follows immediately. 

Finally, to establish the validity of E q s .  (7) - (9), take 

Y a = a  -2 -2 a = a  -1 -1 
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and hence 

= C a + C21z2 + C a 11-1 31-3 B = b  -1 -1 (1.2.2) 

and 

= C ~a + C a + C32z3 1271 22-2 B = b  -2 -2 (1 .2 .2)  

Then 

= c21 - 5 2  (1.2.14) 

so that 

- - '21'32 - '31'22 i- '31 

(j sk) c21 - 
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- C C is the cofactor of C in the determinant of Now’ ‘21‘32 31 22 13 
C , and is thus equal to C13 (see Sec. 1.2). Consequently, Eq. (l) 

is equivalent to Eq. (7); and Eqs. (8) and (9) can be obtained by 

cyclic permutation of the subscripts in Eq. (7). 

Example: Referring to Fig. 1.4.1, which depicts the rigid body 

B previously considered in the Example in Sec. 1.1, suppose that B 

is subjected to a one-hundred-and-eighty degree rotation relative to 

A about an axis parallel to the unit vector ; and let b+ 

(i = 1,2,3) be a unit vector fixed in B and equal to % (i = 1,2,3) 

prior to the rotation. The direction cosine matrix C satisfying 

Eq. (1.2.2) subsequent to the rotation is to be determined. 

For 8 =: T rad., Eq. (1) yields a Rodrigues vector of infinite 

magnitude, and Eqs. (2) and (4) lead to an indeterminate form of C . 
To evaluate this indeterminate form, one may express each element of C 

in terms 

(21, and 

sion as 

(1.2.23) 

C . The 

e = V ,  

of 8 and X (i = 1,2,3) by reference to Eqs. (1) and 

then determine the limit approached by the resulting expres- 

8 approaches IT rad. Alternativly, one can use either Eqs. 

- (1.2.31) or Eqs. (1.3.6) - (1.3.14) to find the elements of 

latter equations are particularly convenient, because, for 

so that 

= A * a .  (i = 1,2,3) -1 - E 

(1.3.2) 
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/ 

Figure 1.4.1 
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and 

= o  
E 4  (1-3.3) 

Hence, with 

,4 A. x - + - a  - 5 5 2  5 -3 

one finds immediately that 

E l = O ,  4 
f -  

&3 5 

and substitution into Eqs. (1.3.6) - (11.3.14) then gives 

1 c = -  
25 

7 
-25 0 01 

0 - 7  

0 24 
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1.5 Indirect determination of orientation 

and I J~  , b b are dextral sets of If 51 s z2 9 53 3 -2 ' -3 

orthogonal unit vectors fixed in reference frames A and B respect- 

ively, and the orientation of each unit vector in both reference frames 

is known, then a description of the relative orientation of the two 

reference frames can be givsn in terms of direction cosines 

(i,j = 1,2,3), for, in accordance wkth Eq. (1.2.1), these can be found 

by simply evaluating gi % 
dot-products cannot be evaluated so directly, it may be possible to find 

C (i, j = 1,2,3) . This is the case, for example, when each of two 
non-parallel vectors, say E and 9 , has a known orientation in both 
A and B , so that the dot-products zi p , % 9 , b+, E , 
and % g, (i = 1,2,3) can be evaluated directly. In that event, one 

can find C as follows: Form a vector - r and a dyadic - (T by letting 

ij 
C 

(i,j = 1,2,3) . But, even when these 

i j  

ij 

A 
L ' E X 9  

and 

Next, express the first member of each dyad in Eq. (2) in terms of a -i' 
and the second member in terms of b (i = 1,2,3) . Finally, carry out -i 

the multiplications indicated in the relationship 
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Deviation: It will be shown that the dyadic - (J defined in Eq. (2) 

is a unit dyadic, that is, that for every vector 1 , 

The validity of Eq. (3) can then be seen to be an immediate consequence 

of the' definition of Cij , given in Eq. (1.1.1). 

If and 9 are non-parallel, and - r is defined as in Eq. (l), 

then every vector v can be expressed as 

where a , $ , and y are certain scalars. From Eq. (a), 

so that 

2 = ar 
(1) 

- 

Similarily, scalar multiplication of Eq. (a) with r x p and 2 x 9 

leads to the conclusion that 

- 
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and 

Substituting from Eqs. (c) - (d) into Eq. (a), one thus finds that 

Example: Observations of two stars, P and Q , are made simul- 
taneously from two space vehicles, A and B , in order to generate 
data to be used in the determination of the relative orientation of A 

and B . The observations consist of measuring the angles 4 and JI 

shown in Fig. 1.5.1, where 0 represents either a point fixed in A 

or a point fixed in B , R is either P or Q , and -1 c 3 5 2  9 -3 C 

are orthogonal unit vectors forming a dextral set fixed either in A or 

B . 
direction cosine matrix C is to be determined. 

For the numerical values of these angles given in Table 1, the 
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R 

Figure 1.5.1 
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Table 1 

Angles 4 and J, in degrees 

4 

P I 
J, 

c = b  1 135 -i -i i 

Q T 

0 

If - R is defined as a unit vector directed from 0 toward R (see 

Fig. 1.5.1), then 

R = cos J, cos +c1 + cos I) sin (pc2 + sin $s3 - 

Hence, letting p and g be unit vectors directed from 0 toward 

P and toward Q , respectively, and referring to Table 1, one can 
express each of these unit vectors both in terms of sl , g2 , -3 a 
and in terms of -1 b ’ -2 b ’ -3 b ’ as indicated in lines 1 and 2 of 

Table 2; and these results can then be used to evaluate - r 

Eq. (111, 9 x r , and - r x p . Noting that (see line 3 of Table 2) 

[see 

Table 2 
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2 2  6 6 7 
16 16 16 8 

r =-+-+-a- - 

one thus obta ins  

and 

=s a e 0 . b  = -1 - -3 c13 (3) 

and so f o r t h ;  that is, 

'1 0 

0 

c =  I: 1 

-1 0 O _ I  I 
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1.6 Successive rotations 

When a rigid body B is subjected to two successive simple ro- 

tations (see Sec. 1.1) in a reference frame A , each of these rotations, 

as well as a single equivalent rotation (see Sec. 1.3), can be described 

in terms of direction cosines (see Sec. 1.2), Euler parameters (see 

Sec. 1.3) and Rodrigues parameters (see Sec. 1.4); and, no matter which 

method of description is employed, quantities associated with the indi- 

vidual rotations can be related to those characterizing the single 

equivalent rotation. In discussing such relationships, it is helpful 

to introduce a fictitious rigid body $ which moves exactly like B 

during the first rotation, but remains fixed in A while B performs 

the second rotation. For analytical purposes, the first rotation can 

then be regarded as a rotation of B relative to A , and the second 
rotation as one of B relative to B . 

- 

If si (i = 1,2,3) , hi (i = 1,2,3) , and gi (i = 1,2,3) 

are three dextral sets of orthogonal unit vectors fixed in A , 
and 2 respectively, and such that si = b = b (i = 1,2,3) prior 

to the first rotation of B in A , and if ACB , BCB , and *CB 

are the associated direction cosign matrices characterizing respectively 

the first, the second, and the single equivalent rotation, so that 

B , 
- 

4 %  - 

- 
[b b b J =  [g c ]  BCB -1 -2 -3 -1 -2 -3 

and 
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then 'CB , expressed in terms of 'C' and BCB , is given by 

Similarly, for Rodrigues vectors, 

T O  state the analogous relationship in terms of Euler parameters, we 

first define three sets of such parameters as follows: 

(i = 1,2,3) directed as after the second rotation, and with el , e 2  , 
and 0 denoting respectively the radian measures of the first, the second, 

With zi and hi 

and the equivalent rotation, 
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It then follows that 

Furthermore, 

and 

-- 
A B - AE B BE B - AEB . BEY 
€ 4 -  4 4 - - 

Eqs. ( 4 ) ,  (5), ( 1 2 ) ,  and (13) all reflect the fact that the final 

orientation of B in A depends upon the order in which the successive 

rotations are performed. For example, in Eq. ( 4 ) ,  and can- 
- 
BCB 

not be interchanged without altering the result, and in Eq. (13) the 

presence of a cross-product shows that order cannot be left out of account. 

Repeated use of Eqs, (4 )  - (14 )  permits one to construct formulas 

for quantities characterizing a single rotation that is equivalent to 

any number of successive rotations. For example, for three successive 

rotations, 
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- - - _  
ACB - A B BCB BCB - c  

- - - -- 
where A(? , BCB , and BCB are direction cosine matrices associated 

with the first, the second, and the third rotation, respectively. 

Derivations: Substitution from Eq. (1) into Eq. (2) gives 

-- 

and comparison of this equation with Eq. (3) shows that Eq. (4) is 

valid. 
- 

To obtain Eq. (51, let a , b and b be vectors fixed in A , - 3  - 
- - 

B , and B , respectively, and choose these in such a way that a =  h = 

prior to the first rotation of B in A . Then, in accordance with 

Eq. (1.4.5), there exist Rodrigues vectors 2 , p , 

isfying the equations 

- 
A B  and p sat- A X  B B  - 

and 

a - b = ( a + b ) x  A B  p_ - - -  

(a I 

- 
Cross-multiply Eqs. (a) and (b) with BpB and AB p , respectively; - - 
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subtract the resulting equations; and use the fact that 

and 

to eliminate E wherever it appears as a member of a scalar product. 

This leads to 

- 
Next, add Eqs. (a) and (b), and eliminate - b by using Eq. (d), thus 

obtaining 

- - 
A 5  B B  B B  A B  - P + & + P  e 

a - b =  (a+b) x - (e) 
B B  

* P  
ApB 
- - 1 -  

Together, Eqs. (e) and ( c )  imply the validity of Eq. (5), for Eqs. (e) 

and (c) can be satisfied for all choices of the vector g only if Eq. (5) 

is satisfied. 

A s  for Eqs. (13), and (14), note that it follows from Eqs. (1.3.1), 

(1.3.3), and (1.4.1) that 
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and 

Consequently, 

and, dot-multiplying each side of this equation with itself and using 

Eq. (1.3.4), one finds that 

But 

2 

(1 .3.4)  

Hence 
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and 

so that, using the upper sign, one obtains Eq. (14). Furthermore, sub- 

stitution into Eq. (i) then yields Eq. (13). 

Finally, to establish the validity of Eq. (12), it sufficies to 

show that the four scalar equations implied by this matrix equation 

can be derived from Eqs. (13) and (14). To this end, one may employ 

Eqs. (6) and (7) to resolve the right-hand member of Eq. (13) into 

components parallel to hl , b and E3 -2 ’ 
- - 

and then dot-multiply both 

sides of the resulting equation successively with h1 , k2 , and k3 9 

using Eq. (9) to evaluate * b. and Eqs. (1.3.6) - (1.3.14) to 

form ki b , which gives, for example, 
1 - 

-j 

In this way one is led to the first three scalar equations corresponding 

to Eq. (12); and the fourth is obtained from Eq. (14) by making the 

substitution 
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Example: In Fig. 1.6.1, g1 , g2 , and a are mutually perpen- 

dicular unit vectors; X and Y are lines perpendicular to s1 , and 
making fixed angles with s2 and a and B designates a body that 

is to be subjected to a ninety degree rotation about line X and a one- 

hundred-and-eighty degree rotation about line Y , the sense of each of 
these rotations being that indicated in the sketch. 

-3 

-3 ’ 

Suppose that the rotation about X is performed first. Then, if 

-l b , -2 b , and k3 are unit vectors fixed in B , there exists a 
matrix Cx such that, subsequent to the second rotation of B , 

Similarly, if the rotation about Y is performed first, there exists 

a matrix C such that, subsequent to the second rotation of B , 
Y 

C and C are to be determined. 
X Y 

AcX In order to find Cx by using Eq. (4), one may first form 

by reference to Eqs. (1.2.23) - (1.2.31) with 0 =  IT/^ and 

x l = o ,  x2 = 4 3 2  y x3 = 1/2 

which gives 
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Figure 1.6.1 
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- 
Next, t o  construct the matrix BCB , one must express a unit vector 

- 
A which is parallel to Y in terms of suitable unit vectors b b - -1 ’ -2 
and E3 . This is accomplished by noting that , resolved into com- 
ponents parallel to a a2 , and z3 , is given by -1 ’ 

1 J? 
- 2 -2 2 23 A = - a  + -  

so that, using Eq. (1.2.9) and *C‘ , one obtains 

= - - b  1- +25 
2 -1 4 -2 

With 8 = T , Eqs. (1.2.23) - (l.2.31) then provide 

- 314 - 614 1 

- 5/81 

Consequently, 
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C y  can be found similarly. Alternatively, one may use Euler par- 

ameters, proceeding as follows: 

With expressed i n  terns of sl , s2 , and , aad with 

8 = T, Eq. (1.3.1) gives 

and, from Eq. (1.3.3), 

Similarly, for the second rotation 

and 

Hence 
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so that, in accordance with Eq. (8), 

A B  6 
x:- 

Jz 
El - - 4 ’  €3 4 

A B -  

while 

The elements of C can now be obtained by using Eqs .  (1.3.6) - 
Y 

(1.3.14), which gives 

0 1 0 

c = -112 0 6 1  2 I 6 1 2  0 112 
Y 

- 
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1.7 Orientat ion angles 

Both f o r  physical  and f o r  a n a l y t i c a l  reasons i t  is sometimes desir-  

ab le  t o  descr ibe the  o r i en ta t ion  of a r i g i d  body 

A i n  terms of three  angles. For example, i f  B is the  ro to r  of a 

gyroscope whose outer  gimbal axis is fixed i n  a reference frame 

then the  angles 4 , e , and J, shown i n  Fig. 1.7.1 furn ish  a means 

f o r  describing the  o r i en ta t ion  of B- i n  A i n  a way t h a t  is  p a r t i c u l a r l y  

meaningful from a physical point of view. 

One scheme f o r  bringing a r i g i d  body 

B i n  a reference frame 

A , 

B i n t o  a desired o r i en ta t ion  

i n  a reference frame A i s  t o  introduce ztl , z2 , -3 a and Ll , k2 , 
b as dex t r a l  sets of orthogonal u n i t  vectors  f ixed i n  A and B , -3 

respect ively;  a l i g n  hi with si (i = 1,2,3) ; and subject  B succesL 

s ive ly  t o  an a ro t a t ion  of amount el , and g2 ro t a t ion  of amount 

e2 , and an z3 r o t a t i o n  of amount O 3  . (Recall t ha t ,  f o r  any u n i t  

vector  t he  phrase "X - rotat ion" means a r o t a t i o n  of B r e l a t i v e  

t o  A during which a right-handed screw fixed i n  B with its a x i s  

t 

-1 

p a r a l l e l  to  - X advances i n  

, e2 , and e3 can be 

cosine matrix C (see Sec. 

denote s i n  8 and cos Bi i 

C 

Speci f ica l ly ,  

'2'3 

= '2'3 I -2 

the  d i r ec t ion  of - X .) Suitable  values  of 

found i n  terms of elements of the  d i r ec t ion  

1.2), which, i f  si and c ( i =  1,2,3) 

( i  = 1,2,3) respec t ive ly ,  is given by 

i 

s s c  c s c  1 2 3 + s3si1 1 2 3 - '3'1 
c a s  1 2 3 - '3'1 1 s1s2s3 4- c c 3 1  

s c  1 2  

, take 

c1c2 J 
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l i n e  f ixed i n  A 

axis 

Figure 1.7.1 
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Next, after evaluating c2 , define a as 

IT IT - -  A -1 
s a s -  2 a = sin (C / c  ) , 

32 2 

and l e t  

a if c33 3 0 

IT - a i f  c33 < 0 % =  [ 
Similarly, define $ as 

IT IT - -  S f 3 S  - A 
B = sin-1(c21/c2) , 2 

and take 

B if Cll 3 0 

IT - B i f  Cl1 < 0 O3 = I  

IT - - i f  c31 = 1 

- i f  Cg1 = -1 
e 2 = (  IT 

2 

( 5 )  

(7) 
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and, a f t e r  defining a as 

IT h -1 - c  * s a s -  
2 2 a = s i n  (-C23) , 

l e t  

= 1 a i f  c22 5 0 

7~ - a i f  CZ2 < 0 

and 

O 3  = 0 

In  other  words, two ro ta t ions  s u f f i c e  i n  t h i s  case. 

A second method f o r  accomplishing the  same object ive i s  t o  subjec t  

B successively t o  a b ro t a t ion  of amount el , a k2 ro ta t ion  of 

amount e2 , and a b ro t a t ion  of amount e3 . The matrix C re- 

l a t i n e  21 3 z2 9 5 3  3 t o  kl 9 4 b 3 -3 b 3 as i n  Eq. (1.2.2) sub- 

sequent t o  the  l a s t  ro t a t ion  is  then given by 

-1 

-3 

[ '2'3 -'2'3 

--s s s c = /  s s c  1 2 3  + s c  3 1  1 2 3 c3c1 

c s s  1 2 3 + '3'1 

e 2  , and e 3  are 1 '  and, i f  ICl3] # 1 , s u i t a b l e  values of 8 

obtained by taking 
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R IT - -  A -1 
p a 5 -  2 

a = s i n  (-C23/c2) , 

I a if c33 O e, = 

A -1 R R - - , < e , < -  ('C12/C2> , 2 2 
I3 = s in  

B if Cll 3 0 

IT - B i f  Cll < 0 O3 = [  

whereas, i f  IC131 = 1 , one may le t  

?r - i f  C13 = 1 

- 5 i f  C13 = -1 
0 2 = (  R 

R R - -  2 s a < -  a sin-l(Cg2) , 2 

O1 i f  c22 3 0 

R - 01 i f  C22 < 0 

O3 = 0 

so that, once again, only two rotations are required. 
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The physical d i f fe rence  btween these  two procedures f o r  bringing 

B i n t o  a desired o r i en ta t ion  i n  A is  that the f i r s t  involves u n i t  

vectors  f ixed i n  the  reference frame, whereas the  second brings u n i t  

vec tors  f ixed i n  the  body i n t o  play. 

is  t h a t  t h ree  d i s t i n c t  u n i t  vec tors  are employed i n  both cases. 

What t he  two methods have i n  common 

It is also poss ib le  t o  br ing B i n t o  an a r b i t r a r y  o r i en ta t ion  

r e l a t i v e  t o  A by performing three  successive ro t a t ions  which involve 

only two d i s t i n c t  u n i t  vectors ,  and these vec tors  may be fixed e i t h e r  

i n  the  reference frame o r  i n  t h e  body. Spec i f ica l ly ,  i f  B is subjected 

successively t o  an  sl ro ta t ion  of amount , an s2 r o t a t i o n  of 

amount e2  , and again an zl ro t a t ion ,  but  t h i s  t i m e  of amount e3 , 
then 

s1s2 
-s c s '2'3 1 2 3  

see 1 2 3  

and, if IClll # 1 , one can take 

-1 
(cll) e 2  = cos 

A -1 
c1 = s i n  (C / s  ) 1 2  2 

1 c s  1 2  

4- '3'1 -c 1 c 2 s 3 - '3'11 

c c c  + s c  3 1  1 2 3 - s3s1) 

a i f  C13 3 0 =/ 7r - a i f  C13 < 0 
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c =  

e3 =I ' if '31 < 

R - j? i f  C31 2 0 

- 
2 

1 2  

C 

s s  

-c s 

while, if I Cll I = 1 , one may l e t  ' 

0 i f  Cll = 1 

n' i f  Cl1 -1 

(28) A -1 IT R 
01 = s i n  (-C2,> , - 3 < a - 2 

a i f  c22 3 0 

IT - a i f  C2* < 0 
el = I 

e3 = 0 

Final ly ,  i f  t h e  successive ro t a t ions  are a b ro t a t ion  of amount 

a b ro t a t ion  of amount e2, and again a kl ro t a t ion ,  but 

-1 

' -2 
t h i s  t i m e  of amount e3 , then 

'2'3 
- s c s  I - c c  1 2 3  3 1  

c c s  1 2 3 '3'1 

'2'3 1 
-s c c (31 1 2 3 - '3'1 1 
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and, if lClll # 1 , O1 , e2  , and O 3  may be found by taking 

c1 rf Cg1 < 0 

A - a if Cgl 2 0 

if C13 >/ 0 

0 3  = (  A - f3 if C13 < 0 

while, if lClll = 1 , one can use 

0 if Cll = 1 

A if Cll = -1 O 2 =  

A .IT A -1 - -  a = s in  (C32) , 2 < a < -  2 

a if c22 2 0 

81.1 A - a if c22 < 0 

e 3  = o 

( 3 4 )  
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The matrices i n  Eqs. (1) and 01) are in t imate ly  r e l a t e d  t o  each 

other:  E i ther  one may be obtained from t h e  o ther  by replacing Oi with 

-8 (i = 1,2,3) and transposing. The matrices i n  Eqs. (21) and (31) 

are r e l a t e d  s imi la r ly .  

i 

These f a c t s  have t h e  following physical s i g n i f i -  

cance, as may be v e r i f i e d  by using Eq. (1.6.4): I f  B i s  subjected 

, successively t o  an gl , an g2 , and an a r o t a t i o n  of amount 

€I2 , and € I 3  , respec t ive ly ,  then ,B can be brought back i n t o  i t s  

o r i g i n a l  o r i en ta t ion  i n  A by next subjecting B t o  successive -hl , 
-k2 , and -h3 r o t a t i o n s  of amounts el , e 2  , and O 3  , respect-  

ively.  Similarly,  employing only four  u n i t  vec tors ,  one can subjec t  B 

-3 

t o  successive r o t a t i o n s  characterized by elSl , O2S2 , 8.pl , -elkl , 
-O2k2, and -8 b 

a t i o n  of B i n  A . Furthermore, i t  does not matter whether t he  ro- 

without producing any u l t imate  change i n  the  or ien t -  3-1 

t a t i o n s  involving u n i t  vec tors  f ixed  i n  A are preceded o r  followed 

by those involving u n i t  vec tors  fixed i n  B ; t h a t  is ,  t h e  sequences 

of successive r o t a t i o n s  represented by 8 1 b 1 3 9 2 2  9 , -e& 9 

-8 2-2 a 3 - 353 and by elkl , e2b2 1 e&l 9 -elgl 9 -e2s2 Y - 8 9 1  

a l s o  have no n e t  e f f e c t  on t h e  o r i en ta t ion  of B i n  A . 
To i n d i c a t e  which set of t h ree  angles one i s  using, one can speak 

of "space-three-vector angles" i n  connection with Eqs. (1) - (lo), 
"body-three-vector angles" f o r  Eqs. (11) - (20), "space-two-vector 

angles" f o r  Eqs. (21) - ( 3 0 ) ,  and "body-two-vector angles" f o r  Eqs. 

(31) - (40); and t h i s  terminology remains meaningful even when t h e  

angles and u n i t  vec to r s  employed are denoted by symbols o ther  than 

those used i n  Eqs. (1) - (40). Moreover, once one has i d e n t i f i e d  t h r e e  

angles i n  t h i s  way, one can always f ind  appropr ia te  replacements for  
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Eqs. (ll), (21), (31), o r  C41) by d i r e c t  use of these  equations. 

Suppose, f o r  example, t h a t  , y , 2 and 5 , 2 , - c a r e  dex t r a l  

sets of orthogonal u n i t  vec tors  f ixed i n  a reference frame 

a r i g i d  body B , respect ively;  t h a t  5 = 6. , y = 2 , and 2 = L 
i n i t i a l l y  ; t h a t  B is subjected,  successively,  t o  a - z ro t a t ion  of 

A and i n  

amount y , a y r o t a t i o n  of amount B , and an - x ro t a t ion  of 

amount c1 ; and t h a t  i t  is required to  f ind  the elements L ( i , j  = 1,2,3) 

of the  matrix L 

i j  

such tha t ,  subsequent t o  the las t  ro t a t ion ,  

Then, recognizing a , $ , and y a s  space-three-vector angles ,  one 

can introduce a b. and e1 (i = 1,2,3) as 4 ’  -1’ 

A a = - x  A A - g 2 = x ,  -3 a = z ,  -1 - 

and 

A e3 = --c1 

i n  which case t h e  given sequence of ro t a t ion  is  represented by 

e2z2 , and e+, ; and L can then be found by re fer r ing  t o  Eq. (1) 

t o  express the  sca l a r  product associated with L i n  terms of a , , 

elgl , 

i j  

i j  

and . For instance,  
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= y 0 g = a (-113> L21 -2 

- c s s  + c s  = - '23 = 1 2 3  3 1  
(1.2.1) 

= cos y s i n  s i n  01 + cos a s i n  y 

Derivations: To e s t ab l i sh  t h e  v a l i d i t y  - of Eq.  ( l ) ,  one may use - - - -  
Eq.  (1.6.15), forming *C' , BCB , and BCB with the aid of E q .  

(1.2.35) and E q s .  (1.2.23) - (1.2.31). 

a ro t a t ion ,  l e t  -1 

Speci f ica l ly ,  t o  deal  with the  

rl 

lo (1.2.35) 

0 -:.: C 1 

- -- 
Next, t o  construct  a matrix BCB tha t  character izes  the  z2 ro ta t ion ,  

le t  Av and Bv denote row matrices whose elements a r e  ti2 % 
- 

Av = [O 1 01 

and, from E q s .  (1.2.23) - (1.2*31), with A1 = 0 , X 2  = c1 , h3 = -sl , 
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s1s2 
2 1 + s1 cc2 - 1) 

cIs2 1 
s c (c - 1) 11 2 

2 
1 1 + c (c2 - 1) 

-I 

A matrix assoc ia ted  with a simple r o t a t i o n  t h a t  is  equivalent 

t o  t h e  f i r s t  two r o t a t i o n s  is now giwen by 

2 C 

0 

-"2 

--- 
AcF A C B BcK 

(1.6.4) 

s s  1 2  

1 

1 2  

C 

s c  

c s 7  1 2 :  , 

c1c2 i 
,t 

and, t o  reso lve  a i n t o  components required f o r  t h e  construction of a 

matrix BCB , one may use  Eq. (1.2.9) t o  ob ta in  

-3 a 

[O 0 11 A B  c - - r-s2 s1c2 c1c21 
(e) 

a f t e r  which Eqs. (1.2.23) - (1.2.31) y i e l d  

i 2 2 2  -c21s1s3fc1s2 U-C,) 1 -s  2 3  s +s 1 1 2  c c 2 )1-c3) l - ( s2  +sl c2 1 (l-cg) 1 
and subs t i t u t ion  from Eqs. (a), (d), and ( f )  i n t o  Eq. (1.6.15) l e a d s  

d i r e c t l y  t o  Eq. (1). 

Eq. (11) may be derived by using Eq. (1.6.15) wi th  
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BcT = 
(1.2.36) 

c1 1 

1 

-S 

C 
- 

0 

0 

1 

0 

and 

to 0 

E q s .  (2) - (10) and (12) - (20) a r e  immediate consequences of Eq. (1) 

and Eq. (ll), respec t ive ly ;  and E q s .  (21) - (40) can be generated by 

procedures similar t o  those employed i n  the  der iva t ion  of E q s .  (1) - (20). 

b a r e  Example: If u n i t  vec tors  zil , g2 , -3 a and 9 k.2 9 -3 

introduced a s  shown i n , F i g .  1.7.2, and the  angles Cp , 0 , and 11, 

shown i n  Fig. 1.7.1 a r e  re-named , e 2  , and O3 respec t ive ly ,  

then O1 , e2 , and e 3  a r e  body-two-vector angles such t h a t  Eqs .  (31) 

- (40) can be used t o  discuss  motions of B i n  A . However, as w i l l  

be seen later, it is undesirable t o  use these angles  when deal ing with 

motions during which the  ro to r  ax i s  becomes coincident,  o r  even near ly  

coincident,  with the  outer  gimbal ax is .  

is re fer red  t o  a s  "gimbal lock".) 

(Coincidence of these  two axes 

Therefore, i t  may be convenient to 

employ i n  the  course of one ana lys i s  two modes of descr ip t ion  of the  
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Figure 1.7.2 
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o r i e n t a t i o n  of B i n  A , switching from one t o  t h e  o ther  whenever 

acquires a value ly ing  i n  a previously designated range. The following 

s o r t  of question can then arise: I f  $1 , 9, , and $3 are the  space- 

three-vector angles associated w i t h  gl , -3 a and kl Y k2 Y -3 b Y 

what 

e3  f 
are the  values of these  angles corresponding to  

60'? 

Inspection of Eqs. (2) - (6) shows t h a t  t h e  elements of C required 

el = 30' e 2  = 45" , 

f o r  t h e  evaluation of $1 $2 , and $3 are Cgl , C32 , C33 , C21 

and Cll. From Eq. (31), 

16 -0.613 '31 - -- 2 2  = 

c21 = 2 2 fi = 0.354 

Cll, = 4 = 0.707 

Hence 

-1 (b2 = s i n  (0.613) = 37.8' 
(2 1 

-1 
c1 * s i n  (0.780/0.791) = 80.0' 

(3 1 
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41 

B 

= loo.oo 
(4 1 

= 26.5' 
(5 1 
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1.8 Small rotations 

When a simple rotat ion (see Sec. 1.1) is small i n  the sense that 

second and higher powers of play a negligible role  i n  an analysis 

involving the rotation, a number of the relationships discussed here- 

tofore can be replaced with simpler ones. 

(1.1.2) yield respectively 

8 

For example, Eqs. (1.1.1) and 

b = a - a x A9 - - - -  

and 

c = u - u x x e  - - - -  

while Eqs. (1.3.1), (1.3.3) and (1.4.1) give way to  

1 & = - l e  2 -  

E 4  = 1 

and 

1 - P 

(3 

(4 

which shows that ,  to  the  order of approximation under consideration, 

the Rodrigues vector is indistinguishable from the Euler vector. 

As w i l l  be seen presently, analytical  descriptions of small rota- 

t ions frequently involve skew-symmetric matrices. In  dealing with these, 
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it i s  convenient t o  e s t a b l i s h  t h e  no ta t iona l  convention t h a t  t h e  symbol 

obtained by placing a t i l d e  over a le t ter ,  say q , denotes a skew- 

symmetric matrix whose off-diagonal elements have va lues  denoted by 

+qi ( i  = 1 , 2 , 3 )  , t hese  elements being arranged as follows: 

-I 

Q2 

-41 
0 

- 

5 

9' 

Using t h i s  convention, one 

l o  -43 

- 0  I q3 
1-42 41 

can express the  results obtained by neglect- 

ing second and higher powers of 8 i n  Eqs. (1 .2 .23)  - (1.2.31) as 

c = u +-i;e 

Similarly,  Eqs. ( 1 . 3 . 6 )  - (1.3.14) y i e l d  

c = u + 2 ;  

(7) 

AcZ Considering two successive small ro t a t ions ,  suppose t h a t  

and BCB are d i r e c t i o n  cosine matrices charac te r iz ing  t h e  first and 

second such r o t a t i o n  as i n  Sec. 1 . 6 .  Then, ins tead  of using Eq. ( 1 . 6 . 4 ) ,  

one can express t h e  d i r e c t i o n  cosine matrix 

equivalent small r o t a t i o n  as 

- 

ACB associated wi th  a s i n g l e  

-. A E  B.B ACB = u + (. c + c - 2u) 
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Similarly,  f o r  three small r o t a t i o n s  Eq. 0.6.15) l eads  to  

- 
Rodrigues vec to r s  , , and ApB - associated respect-  

i ve ly  wi th  a f i r s t ,  a second, and an equivalent s i n g l e  small r o t a t i o n  

s a t i s f y  t h e  equation 

Both t h e  r e l a t ionsh ip  and Eq. (9) show t h a t  t h e  f i n a l  o r i e n t a t i o n  of 

B i n  A is  independent of t h e  order i n  which two small successive 

r o t a t i o n s  are performed. 

F ina l ly  when el , O 2  , and O 3  i n  Eqs. (1.7.1) - (1.7.40) are 

small i n  t h e  sense t h a t  terms of second o r  higher degree i n  these 

q u a n t i t i e s  are neg l ig ib l e ,  then Eqs. (1.7.1) and (1.7.11) each y i e l d  

(see Eq. (6) f o r  t he  meaning of e)  
- 

c = u + T  

showing that i t  i s  immaterial whether one uses space-three-vector 

angles o r  body-three-vector angles under these  circumstances. 

r e l a t ionsh ip  corresponding t o  Eq. (12) f o r  twovec to r  angles,  namely 

The 

c = u +  
(1.7.21) 

e2 

(e3 + e,) 0 

0 

0 -(e3 + el) 
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is less use fu l  because this equation cannot be solved uniquely f o r  

and e3 as functions of C (i,j = 1,2,3).  
i j  

Derivations: Eq. (1) follows from Eq. (1.1.1) when s i n  8 is re- 

placed wi th  8 and cos 8 with unity.  The same s u b s t i t u t i o n  i n  Eq. 

(1.1.2) l eads  t o  Eq. (2). Eqs. (3) and (4) are obtained by replacing 

s i n  (8/2) with 8/2 and cos @/a)  with un i ty  i n  Eqs. (1.3.1) and 

(1.3.3), and Eq. (5) follows from Eq.-(l.4,1) when t an  (8/2) is re- 

placed wi th  8/2. 

Eq. (7) follows d i r e c t l y  from Eqs. (1.2.23) - (1.2.31), and Eq. 

(8) r e s u l t s  from dropping terms of second degree i n  El Y E2 9 and/or 

c3 when forming C i n  accordance wi th  Eq. (1.3.6) - (1.3.14), which 

is  j u s t i f i e d  i n  view of Eqs. (3) and (1.3.2). 
i j  

To e s t a b l i s h  the  v a l i d i t y  of Eq. (9) one may proceed as follows: 
-=  

Using Eq. (7), one can express t h e  matrices and BCB introduced 

i n  Sec. 1.6 as 

and 

where 8 and + are respec t ive ly  t h e  rad ian  measures of t h e  f i r s t  

and of t h e  second s m a l l  r o t a t ion ,  and A and cha rac t e r i ze  t h e  
4. 

associated axes of ro t a t ion .  Subs t i tu t ing  i n t o  Eq. (1.6.4), and 

dropping t h e  product A V O +  , one then obta ins  
- 
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= u + @ + Y e  4- u +;I$ - 2u) 
- -. - - 

= u + (ACE + BCB - 2U) 

A s i m i l a r  procedure l e a d s  t o  Eq. (10). 

Finally,  Eq. (11) may be obtained by using E q .  (5) i n  conjunction 

with Eq. (1.6.5), and E q s .  (12) and (13) r e s u l t  from l inear iz ing  i n  

‘i 

the  convention established i n  E q .  (6). 

(i = 1,2,3) i n  E q s .  (1.7.11) and (1.7.21), respectively,  and using 

Example: In  Fig. 1.8.1, a and a form a dext ra l  set -1 ’ 5.2 9 -3 

of orthogonal un i t  vectors,  with - al and s2 p a r a l l e l  to  edges of a 

rectangular p l a t e  B ; and X and Y designate l i n e s  perpendicular 

t o  sl and a respectively.  When B is  subjected, successively, 

t o  a ro ta t ion  of amount 0.01 rad. about X and a ro ta t ion  of amount 

0.02 rad. about Y , t he  sense of each ro ta t ion  being tha t  indicated 

i n  the  sketch, point P t raverses  a distance d . This dis tance is  t o  

be determined on t h e  assumption tha t  t he  two ro ta t ions  can be regarded 

as small. 

-2 ’ 

I f  - a designates the posi t ion vector of point P r e l a t i v e  t o  

point 0 before the  ro ta t ions  a re  performed, and - b the  ro t a t ion  

vector of P r e l a t i v e  t o  0 subsequent t o  t h e  second ro ta t ion ,  then 

d = Ilr - al 

with 
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Figure  1.8.1 
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- a L ~ ( 3 ~ 4  + 4z2) 

and 

where - X and 8 are respec t ive ly  a u n i t  vec tor  and t h e  rad ian  measure 

of an angle associated with a s i n g l e  r o t a t i o n  t h a t  is  equivalent t o  t h e  

two given ro ta t ions .  To determine t h e  product A8 , l e t  2 be  t h e  

Rodrigues vec tor  f o r  t h i s  equivalent r o t a t i o n ,  i n  which case 

and r e f e r  t o  Eq. (11) t o  express - p as 

0.02 x f -  0.01 = -  
2 -  2 -Y - P = j & + %  

(5 1 

where & and X are u n i t  vec to r s  d i rec ted  as shown i n  Fig. 1.8.1; 

t h a t  is, 
7 

and 
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then 

and 

2% 

1' = 0.098L 16(1 + fi)2 + 9(1 + f i l 2  + ( 4 1 6 -  3) 
20000 d = L[ 

(a,i) 
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1.9 Screw Motion -- 
If P1 and P2 are points fixed in a reference frame A , and a 

point P is moved from P to P2 , then P is said to experience 

a displacement in A and the position vector of P2 relative to 

P1 is called a displacement vector of P in A , .  

1 

When points of a rigid body B experience displacements in a 

reference frame A , one speaks of a displacement of B in A ; and 

a displacement of B in A is called a translation of B in A if 

the displacement vectors of all points of B in A are equal to each 

other. 

Every displacement of a rigid body B in a reference frame A 

can be produced by subjecting B successively to a translation in 

which a basepoint P of B chosen arbitrarily, is brought from its 

original to its terminal position, and a simple rotation (see Sec. 1.1) 

during which P remains fixed in A . The Rodrigues vector (see Sec. 1.4) 

for the simple rotation is independent of the choice of basepoint, whereas 

the displacement vector of the basepoint dzpends on this choice. When 

the displacement vector of the basepoint is parallel to the Rodrigues 

vector for the rotation, the displacement under consideration is said 

t o  be produced by means of a screw motion. 

Every displacement of a rigid body B in a reference frame A 

can be produced by means of a screw motion. In other words, one can 

always find a basepoint whose displacement vector is parallel to the 

Rodrigues vector for the simple rotation associated with a displacement 

of B in A . In fact, there exist infinitely many such basepoints, 

all lying on a straight line that is parallel to the Rodigues vector 
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and bears the name screw axis; and the displacement vectors of all 

points of B lying on the screw axis are equal to each other and 

can, therefore, be characterized by a single vector, called the 

screw translation vector. Moreover, the magnitude of the screw trans- 

lation vector is either smaller than or equal to the magnitude of the 

displacement vector of any basepoint not lying on the screw axis. 

If S is the displacement vector of an arbitrary basepoint P , 

p 

ment of B in A, and P is a point of B lying on the screw axis 

(see Fig. 1.9.1), then the position vector 2 of P relative to 

P prior to the displacement of B in A satisfies the equation 

is the Rodrigues vector for the rotation associated with a displace- - * 
* * 

where p 

vector & is given by 

depends on the choice of P* ; and the screw translation 
* 

Derivation: If both P* and P are points of B selected 
* * 

arbitrarily, and a is the position vector of P relative to P 
* 

prior to the displacement of B in A , while is the position 

vector of P relative to P subsequent to this displacement, then 

the displacement vector 6 of P* can be expressed as (see Fig. 1.9.1) 

* 
* 
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P 

a 

\-. _- 
B subsequent to 
displacement 

B prior to 
displacement 

Figure 1.9.1 
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where is the displacement vector of P ; and 

+ k*) * - * * 
P x (a b - s  - - 

(1.4.5) - 

so that 

* * 
Hence, if P is to be chosen such that 6 be parallel to p , in 

I * * 
which case p x 6 is equalto zero, then 2 must satisfy the equation - -  

or, equivalently, 

so that 
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and 

i n  agreement with Eq. (2) .  As f o r  Eq. (l), one may so lve  the equation 

* 
f o r  , s u b s t i t u t e  t he  r e s u l t  i n t o  Eq. ( f ) ,  obtaining 

* 2  and then simply def ine  p, as p . 5 p/_p . Moreover, t h i s  equation 

shows t h a t  the  locus of basepoints  whose displacement vec tors  a r e  

p a r a l l e l  t o  p i s  a s t r a i g h t  l i n e  p a r a l l e l  t o  p . 

- - 

- - 
The content ion t h a t  the  magnitude of the  screw t r a n s l a t i o n  vector  

i s  e i t h e r  smaller than o r  equal t o  the  magnitude of the  displacement 

vector  of any poin t  not  lying on t h e  screw axis i s  based on the  obser- 

va t ion  t h a t  
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Example: The Example in Sec. 1.3 dealt with a displacement of the 

triangle ABC shown in Fig. 1.9.2. The displacement in question 

was one that could be produced by performing a translation of the 

triangle during which point A is brought to A '  , and following 

this with a rotation during which point A remains fixed at A '  ; 

and the Euler vector p and Euler parameter e4 for the rotation 

were found to be 

e =  - 

and 

al , g2 , and a are unit vectors directed as shown in Fig. -3 where 

1.9.2. 

ultimate position by means of a screw motion, form p by reference 

to Eqs. (1.4.2) and (1.4.3), obtaining 

To determine how the triangle can be brought into the same 

- 
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A '  

L 

B' B 

L I 

a -1 

Figure 1,9.2 
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Next, l e t  denote  t h e  displacement  vec to r  of po in t  A ( see  Fig. 

1.9.2); t h a t  is  l e t  

Then 

* 
and the  p o s i t i o n  vec to r  2 of any poin t  P* on the  screw a x i s  

r e l a t i v e  t o  poin t  A p r i o r  t o  the  displacement of t h e  t r i a n g l e  i s  

given by 

2L - -  - 3 (a, + a 2 1  + pP 

* 
Hence, i f  i s  a r b i t r a r i l y  taken equal  t o  zero ,  then P i s  s i t u a t e d  as 

shown i n  Fig. 1.9.3 when the  t r i a n g l e  i s  i n  i t s  o r i g i n a l  pos i t i on ,  and t h e  

screw a x i s ,  being p a r a l l e l  t o  p , appears as ind ica ted .  Furthermore, 

the  screw t r a n s l a t i o n  vec tor  S is given by 
* 
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/-screw axis 

L 

Figure 1.9.3 
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L = ~(2zt-a - a )  -2 -3 

and thus has  a magnitude 

while  t he  amount 8 of t he  r o t a t i o n  assoc ia ted  wi th  the  displacement 

of t he  t r i a n g l e ,  found i n  the  Example i n  Sec. 1 . 3 ,  i s  given by 

8 = -  r a d  

Hence, t o  b r ing  t h e  t r i a n g l e  i n t o  t h e  des i r ed  p o s i t i o n ,  one may proceed 

as follows: Perform a t r a n s l a t i o n  through a d i s t a n c e  5 L / 3  , as 

i nd ica t ed  i n  Fig.  1.9.4, and fo l low t h i s  wi th  a r o t a t i o n  of amount 

2 ~ / 3  rad.  

as shown i n  Fig. 1.9.4. 

about t he  screw axis,  choosing the  sense  of t h e  r o t a t i o n  
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Figure-1.9.4 
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1.10 Angular v e l o c i t y  matrix 

a and bl , b b are two dex t ra l  sets of 

orthogonal u n i t  vec to r s  f ixed  r e spec t ive ly  i n  two re ference  frames o r  

If , E2 ’ -3 -2 ’ -3 

r i g i d  bodies A and 

the  d i r e c t i o n  cos ine  

defined i n  Sec. 1.2 ,  

of C , denoted by 

i: of c ( i , j  = 
i j  i j  

B which are moving relative t o  each o the r ,  then 

matrix C and i t s  elements Cij ( i , j  = 1,2,3) , 
are functions of t i m e  t . The t i m e  de r iva t ive  

6 and defined in terms of t h e  t i m e  de r iva t ives  

1,2,3) as 

can be expressed as t h e  product of C and a skew-symmetric matrix w 

c a l l e d  an  angular v e l o c i t y  matrix f o r  B i n  A and defined as 

- &  T w = c  5 

I n  o ther  words, w i th  defined as i n  Eq. (2), 

. .5. 

c = c w  

I f  functions y(t) , w2(t) , and w , ( t )  are introduced i n  

accordance with t h e  no ta t iona l  convention es tab l i shed  i n  Eq. (1.8.61, 

t h a t  is by expressing w as 
-c. 
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2 0 -w3 

w3 0 -9 

0 

0 2 --w 

and w are given by O 2  ’ 3 then w1 

w1 ‘13‘12 ‘23‘22 ‘33‘32 

w2 = ‘21‘23 + ‘31‘33 ‘11‘13 

w3 = ‘32‘31 ‘12‘11 ‘22‘21 

(4) 

(5) 

as 
“ij  These equations can be expressed more concisely a f t e r  defining 

is given by Eq. (1.2.32). (The quantity nijk is  equal t o  i j k  where E 

uni ty  when the  subscr ipts  appear i n  cycl ic  order; otherwise i t  is  equal 

t o  zero.) 

can then replace Eqs. (5) - (7) with 

Using the  summation convention f o r  repeated subscr ipts ,  one 

w = 11 C (i = 1,2,3) i igh j g  j h  

Similarly, Eqs. (3) can be expressed as 
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i: = E c w @,j = 1,2,3) ij ghi ig h. 

Eqs. (10) are known as Poisson’s kinematical equations. 

Derivations: Pre-multiplication of 25 with C gives 

4. 

c w  = C C T 6  =: E: 
(2 1 (1.2.16) 

in agreement with Eq. (3). 

T .  To see that C C is skew-symmetric, note that 

T O T  (C c) -1- CT i: = tT c + CT E: 

- -  - -  dU - 0 - ccT c) = 
(1.2.17) dt dt 

Eqa. ( 5 )  - (7) follow from Eqs. (2) and (4), that is, from 

0 

[-:2 2 

-w3 
0 

1 w 

w2 

-% 
0 

c21 

c22 

‘23 c33J p31 

$2 

i:22 
0 

‘32 

- 

El3I “3 
c33 

Example: The quantities w1 , w2 , and w3 can be expressed in 

performs a motion of simple a simple and revealing form when a body B 

rotation (see Sec. 1.1) in a reference fram6 A . For, letting 6 and 

-98- 



1.10 

Ai 

substituting from E q s .  (1.2.23) - 0.2.31) into Eq. CS), one obtains 

( i  = 1,2,3) have the same meaning as  i n  Secs. 1.1 and 1.2,  and 

w = [A2 s in  e + X3A1 (1 - cos 0)J  (-A3 cos e + A A 1 1 2  
s in  8)6 

- [-hl s in  e + x2x3 (1 - cos e ) ]  (A,~ + 2 ) s in  e i 
2 2 

2 2 
+ 11 - o1 + )(.I - COS e) ]  (xl COS e + x2x3 sin e14 

= [A1 (Al + X22 + A 3  1 
2 2 + (1 - x1 - - A ) ( A ~  cos e + A x s in  e - x x s in  e cos 0116 3 2 3  2 3  

which, since 

2 2 2 
X1 + + A 3  = 

reduces t o  

w = Ali 1 

Similarly, 

w2 = A28 

and 

w3 = A 3 6  
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1.11 Anpular velocity vector 

The vector 2 defined as 

and b (i = 1,2,3) have the same meaning as in Sec. 1.10, 
Oi. 5 where 

is called the angular velocity of B in (or relative to) A . At 
times it is convenient to use the more elaborate symbol 

of u, . The symbol BwA then denotes the angular velocity of A in 

B a and 

in place - 

A B  B A  u, = - a  

If the first time-derivative of ki in reference frame A is . 
denoted by hi , that is, b is defined as -i 

where the summation convention for repeated subscripts is used and 

51 9 52 3 53 

A , then can be expressed as 

form a dextral set of orthogonal unit vectors fixed in 

. . 

When the motion of B in A is one of simple rotation (see Sec. 
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l.l), the angular velocity of B in A becomes 

where and have the same meaning as in Sec. 1.1. 

One of the most useful relationships involving angular velocity 

is that between the first time-derivatives of a vector 1 in two 

reference frames A and B . If these derivatides are denoted by 
and , that is, - 

dt 

and 

then this relationship assumes the form 

Applied to a vector p fixed in B , Eq. ( 8 )  gives 
c 
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A 
dl AwB 
d t  - - a  

I n  view of t h i s  r e s u l t  one may regard the  angular ve loc i ty  of 

A 

B 

as 'an "operator" which, when operat ing on any vector  f ixed  i n  

i n  

B , 
produces the  t ime-derivat ive of t h a t  vector  i n  A . 

Derivatives:  For i = 2 , the  scalar product apearing i n  Eq. (3) 

can be expressed as 

52 
C - zj e b - 

-2 (1.2.1) 

Consequent l y  , 

. 

and, expre Lng h3 as 

one f inds  t h a t  

. 

Simi lar ly ,  
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and 

Subs t i t u t ing  i n t o  Eq. (l), one thus a r r i v e s  a t  Eq. (4). 

When the  motion of B i n  A is one of simple r o t a t i o n ,  Eqs. 

(a) - (c) of t he  Example i n  Sec. 1.10 amy be used t o  express the  angular 

ve loc i ty  of B i n  A as 

i n  agreement with Eq. (5) 
A B A To e s t a b l i s h  the  v a l i d i t y  of Eq. ( 8 ) ,  l e t  vi , vi , v , and 

Bv have the  same meaning as i n  Sec, 1.2. Then, from Eqs. ( 6 )  and (1.2.7), 

A, A *dv - - = A+ a + v2g2 + c3g3 
d t  1-1 

Now, 

- 103.. 



1.11 

d B T  B *T - - - ( vc ) = B;CT + vc dt (1.2.9) 

and 

T -  [zl g2 z31 - c C~L, i~~ i ~ ~ ] ~  
(1.2.2) 

Hence 

- - BG[& k2 k3IT + Bv zT [b b b IT (1.2.17, 1.10.2) -1 -2 -3 

Furthermore, from Eqs. (7) and (1.2.8) 

B 
BC [b  b b IT = ,dY dt 

-1 -2 -3 

while it follows from Eqs. (1) and (1.10.4) that 

Consequent ly 
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Finally,  Eq. (2) follows from the f a c t  that, interchanging A 

and B i n  Eq. ($1, one obtains 

'dv - Adv A 
d t  d t  - - 9 -  -I. w x y _  

and, adding corresponding members of t h i s  equation and of Eq. a), one 

arrives a t  

Adv - Bdv - Bdv Adx A A 
- + - = -  +-+( ;  + g ) x v  - d t  d t  d t  d t  

or  

This equation can be sa t i s f i ed  f o r  a22 1 only i f  

Example: When a point P moves on a space curve C fixed i n  a 

reference frame A 

vectors kl , b b can be generated by l e t t i n g  E be the  posit ion 

vector of P relative t o  a point Po fixed on C and defining kl , 
b and k3 as -2 ' 

(.see Fig. 1.11.1), a dext ra l  set of orthogonal un i t  

-2 ' -3 

A b 5 p' -1 
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0 
P 

b -3 

- 
b 
-2 

P 

b \\ -1 

S 

4 

Figure 1.11.1 
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where primes denote differentation in A with respect to the arc 

length displacement s of P relative to Po . The vector kl is 
called a vector tangent, b the vector principal normal, and k3 a 
vector binormal of C at P ; and-the derivatives of hl , k2 , and 
b with respect to s are given by the Serret-FrBnet formulas -3 

-2 

b ' = -Xk2 -3 

where p and X , defined as 

A 
p = 1/1E(l 

and 

are called the principal radius of curvature of C at P and the torsion 

of C at P . 
If B designates a reference frame in which k1 , k2 , and k3 

are fixed, the angular velocity 0 of B in A can be expressed in 

terms of bl , b2 , k3 , p , h , and by using Eq. (4) together with 
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6 = -Ab -2 -3 Cf) 

to obtain 

w = (Ab -1 + b+/p)i 
- (4) 

The term "torsion" as applied t o  

i n  t h i s  context. 

X is seen t o  be p a r t i c u l a r l y  appropriate 
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- 1.12  Angular v e l o c i t y  components 

The expression f o r  $ given i n  Eq. (1.11.1) involves  t h r e e  

components, each of which i s  p a r a l l e l  t o  a u n i t  v e c t o r  f ixed  i n  B . 
A t  times it i s  necessary t o  express  cu - i n  o t h e r  ways, f o r  example, 

t o  r e s o l v e  it i n t o  components parallel  t o  u n i t  v e c t o r s  f ixed  i n  A . 
Whichever r e s o l u t i o n  i s  employed, one may wish t o  know what t h e  

phys ica l  s i g n i f i c a n c e  of any one component of is. 

I n  c e r t a i n  s i t u a t i o n s  phys ica l  s i g n i f i c a n c e  can be a t t r i b u t e d  

t o  angular  v e l o c i t y  components by i d e n t i f y i n g  f o r  each component two 

r e fe rence  frames such t h a t  t h e  angular  v e l o c i t y  of one of t h e s e  relative 

t o  t h e  o the r  is equal  t o  t h e  Component i n  ques t ion .  A s  w i l l  be  seen 

later, t h i s  i s  t h e  case ,  f o r  example, when t h e  angular  v e l o c i t y  of 

B i n  A i s  expressed as i n  Eq. (1.16.1). I n  genera l ,  however, it 

i s  not a simple matter t o  d iscover  t h e  necessary  r e fe rence  frames. 

For in s t ance ,  such r e fe rence  frames are not r e a d i l y  i d e n t i f i a b l e  f o r  

t h e  components A&bl and (&/p)b3 of t h e  angular  v e l o c i t y  found i n  

t h e  Erample  i n  Sec. 1.11. 

An e s s e n t i a l l y  geometric i n t e r p r e t a t i o n  can be given t o  t h e  quan- 

t i t i e s  u1 , u2 , and u) appearing i n  Eq. (l.ll.l), and thus  t o  t h e  

components u) b (i = 1,2,3) of 1u, , by in t roducing  a c e r t a i n  space-  

average va lue  of t h e  f i r s t  t ime-der iva t ive  of each of t h r e e  angles*. 

3 

i-i 

S p e c i f i c a l l y ,  l e t  a be a gene r i c  u n i t  v e c t o r  f ixed  i n  r e fe rence  frame 

A , Ei t h e  or thogonal  p ro jec t ion  of a_ on a plane normal t o  b. 

(i 2: 1,2 ,3) ,  el t h e  angle  between El and I+ , Q2 t h e  angle  

- 
-1 

* 
The au tho r s  are indebted t o  Professor  R .  Slcalak of Columbia Un ive r s i ty  

f o r  t h i s  idea .  
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and O3 the  angle between E .and b , as 2 -1 ’ 3 -2 between e and b 

shown i n  F i g ,  1.12.1. Next, l e t t i n g  S be a u n i t  sphere centered at a 

point 0 , and des igna t ing  as P the  point  of S whose pos i t i on  vec tor  

relative t o  0 is parallel t o  a - (see Fig.  1.12.2)’ assoc ia t e  with P 

the  va lue  of 6 and def ine  ii as 
- 

i 

- 
ii =h. & 6, d o  ( i  = 1,2,3) 

where do i n  t h e  area of a d i f f e r e n t i a l  element of S at  P . Then 

- 
03 = ei ( i  = 1,2,3) i 

Derivation: Defining a as i 

A ai ii: a_ b.  ( i  = 1,2,3) 
-1 

one can express ( see  Fig.  1.12.1) as 

from which it follows t h a t  
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I_- -- 7 '----a- 
b -2 

Figure 1.12.1 
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NOW, - BdCl i s  given both by d t  

B 

= &  b + &  b + h 3 L 3  aa_ - 
dt 1 1  2 - 2  

and by 

B 
- *wB x (;y - BwA x g - - - - - - aa_ 

dt (1.11.9) (1 .ll. 2) 

Con sequent 1 y 

and 

= w1 
9 a2 

a2 + a 3  
- 2  2 

- a3 
2 2 

a2 + a 3  
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To perform the  in t eg ra t ion  indicated i n  Eq. (l), int roduce t h e  

angles 0 and shown i n  Fig.  1.12.2, noting t h a t  then can be 

expressed as 

a_ = cos @ b + s i n  4 cos f b + s i n  4 sin Jr k3 -1 -2 

so t h a t  

a1 = cos 4 , a2 = s i n  4 cos J I  , a3 = s i n  4 s i n  Jr 

while 

d o  = s i n  4 d@ dJr 

Consequently 

n 2n IT 2n 

0 0  0 0  

- 
4n 8 ,  = w1 [ s i n  Ody] d4 - w2 f [ COS 4 COS J I  dJI] d @  

(1) 

2n 
- w [ cos 4 s i n  J I  dq] d4 3 

0 0  

The f i r s t  i n t e g r a l  has t he  value 4n , and t h e  remaining two i n t e g r a l s  

are equal  t o  zero.  Hence 
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Figure 1.12.2 
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S i m i l a r l y  

and 

3 e3 = Lo 

Example: I n  Fig.  1.12.3, B des igna tes  a c y l i n d r i c a l  spacec ra f t  whose 

a t t i t u d e  motion i n  a r e fe rence  frame A can be  descr ibed as a combination 

o f  "coning" and "spinning", t h e  former be ing  cha rac t e r i zed  by t h e  angle  

and involv ing  t h e  motion of t h e  symmetry axis of B on t h e  su r face  of 

a cone t h a t  is  f i x e d  i n  A and has a cons tan t  semi-vertex ang le  0 , 
whi le  t h e  latter is assoc ia t ed  wi th  changes i n  t h e  angle  $ between two 

l i n e s  which i n t e r s e c t  on, and are perpendicular  t o ,  t h e  symmetry axis of  

B one l i n e  be ing  f ixed  i n  B and t h e  o t h e r  one i n t e r s e c t i n g  t h e  axis 

of  t h e  cone. Under t h e s e  circumstances t h e  d i r e c t i o n  cos ine  mat r ix  C 

such t h a t  

where ai and hi (i = 1,2,3) are u n i t  v e c t o r s  d i r e c t e d  as shown i n  

F ig ,  1.12.3, can be expressed as 
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\ 

Figure 1.12.3 
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o r ,  af ter  using E q s .  (1.2.35) and (1.2.37), as 

where se and c0 denote s i n  0 and cos 0 , respec t ive ly ,  and s i m i -  

and w i n  accordance with 1 ’  w 2 y  3 l a r l y  f o r  4 and JI . Forming w 

E q s .  (1.10.5) - (1.10.7), one then obtains  the  following expression f o r  

t he  angular ve loc i ty  - w of B i n  A : 

. 
= ( J r  + OC0) lq - OS0CJr k2 + 4sesJr k3 

A more e f f i c i e n t  method f o r  obtaining t h i s  r e s u l t  is  described i n  Sec. 1.16. 

For present purposes, what i s  of i n t e r e s t  is t h e  f a c t  t h a t  t h e  

nent ( i  = 1,2,3)  i n  E q .  (c) does m t  have a r e a d i l y  apparent physical  s i g -  

n i f icance ,  but  t h a t ,  when w - is  re -wr i t tan  as 

bi -compo- 

then each component has the  same form as the  right-hand member of Eq.  

(1.11.5) and can, therefore ,be  regarded as t h e  angular v e l o c i t y  of a 

body performing a motion of simple ro t a t ion .  

as AI 

Spec i f i ca l ly ,  des igna t ing  

a reference frame i n  which the  axis of the  cone and the  symmetry 
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axis of the cone and the symmetry axis of B are fixed, one can 

observe that A1 performs a motion of simple rotation in  A ; 

moreover, that B performs such a motion i n  A1 ; and, f inal ly ,  

that the associated angular velocit ies  are 

and 

Thus i t  appears that 

A AI A1 B 
w - w - 2  + - 
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1.13 Angular v e l o c i t y  and Euler parameters 

If 21 9 s2 9 -3 a and kl ¶ k2 Y -3 b are two dex t ra l  sets of 

orthogonal u n i t  vec to r s  f ixed  respec t ive ly  i n  re ference  frames o r  r i g i d  

bodies A and B which are moving relative t o  each o ther ,  one can use  

Eqs. (1.3.15) - (1.3.18) t o  a s soc ia t e  wi th  each instant of t i m e  Euler 

parameters 

reference t o  Eq. (1.3.2). I n  terms of 5 and E 

of B i n  A (see Sec. 1.11) can be expressed as 

E ~ ,  ..., E and an  Euler vec tor  - E can then be formed by 4 ¶  

t he  angular v e l o c i t y  4 ,  

€ € - - E X -  

d t  

- .  
4- - d t  

Conversely, i f  - w is known as a function of time, the  Euler parameters 

can be found by solving the  d i f f e r e n t i a l  equations 

Bde 1 

and 

Equations equivalent t o  Eqs. (1) - (3) can be  formulated i n  terms 

of matrices w , E and E defined as 
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and 

1 € 4  E 

1-1 -2 -3 &4 I 1 7 

These equations are 

w = 2&E 

and 

1 T  
E = YE 

Derivations; Substitution from Eqs. (1.3.6) - (1.3.14) into Eqs. 

(1.10.6) - (1.10.8) gives 

. . . . 
w1 = 4(E & + E E )(E E + E1E2 - E3&4 - E E ) 

3 1  2 4  1 2  3 4  . . . + ~ ( E ~ E ~  - E E ) ( E ~ E ~  - E ~ E ~  - + E ~ E ~ )  1 4  
+ 2(1 - 2E1 - ~ € 2  2 )(;2E3 + E2;3 + E1E4 + E1;4> 

. . 
= 2 ( &  1 4  E + E 2 E 3  - E3E2 - Q 4 ~ 1 )  

w = 2cE E + E3E1 - E1E3 - i 4 E 2 )  2 2 4  

w3 = 2(.i E + +E2 - E2E1 - ; E ) 3 4  4 3  
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and these are three of the four scalar equations corresponding to 

Eq. (7). The fourth is 

0 . 
0 5 2(E E + E2E2 + E E + E 4 E 4 )  1 1  3 3  (7) 

and this equation is satisfied because 

. . I d  2 
EIEl + E e + E3E3 = -- 

(1.3.4) 2 2  2 dt (€1 

Thus the validity of Eq. (7) is established; and Eq. (1) can be bb- 

tained by noting that 

= o b  + o b  +o& 1-1 2-2 o - 
(1.11.1) . 0 . 

- l ~ ) b  - €3'2 4 1 -1 = 2 [ ( €  E + E2E3 1 4  (7) 
+ (i E + l3c1 - g1E3 - i E )b 2 4  4 2 -2 

+ ( ; : E  3 4  + ; 1 ~ 2 - E ~  2 1  - & ~ ) b ]  4 3 - 3  

= 2 [ ~  (g b + E2 k2 + E$3) - (E b + c2k2 + E & ~ )  4 1-1 4 1-1 

(;2'3. - 6 3 E 2 )b -1 + ( k 3 ~ 1  - i l c 3 h 2  + --.i2~1)k31 
'd - 0  E Bdg 

( 1  03.2) d t  dt 
= 2 (E4 - - €45 - - E x -) 

Post-multiplication of both sides of Eq. (7) with ET gives 

,,ET = 2gEET . 

Now, using Eq. ( 1 . 3 . 4 )  and referring to Eq. (6), one finds that 
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E ET = 

- - 
1 0 0 0 

0 1 0 '  0 

0 0 1 0 

0 0 0 1 

Consequently 

T . 
WE = 2~ 

in agreement with Eq. ( 8 ) .  

Finally,  

+ W E  + W E )  - - - -  l W * f  
2 -  (1.11.1,1.3.2) 

as i n  Eq.. (3) ; and 

- - = i b  + g b  +Eg3 1-1 2-2 d t  (1.3.2) 

I - [ ( w ~ E ~  - w E + w E )b 2 3  3 2 - 1  
( 8 )  

+ (W E + u2c4 - w E )b 1 3  3 1 - 2  

The right-hand member of t h i s  equation is  equal t o  tha t  of Eq. (2). 

Example: Suppose that the i n e r t i a  e l l ipso id  of B for the  mass center 

B* of 

a l le l  t o  h3. Then, i f  I denotes the i n e r t i a  dyadic of B f o r  B , and 

i f  I and J a r e  defined as 

B is  an e l l ipso id  of revolution whose ax is  of revolution is  par- 
* 
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A I = b I hl = k2 L b -1 - -2 

and 

(b A 
J i b  * I * k 3  -3 - 

* 
the angular momentum - H of B in A with respect to B is given by 

H = Iw b + Iw b + Jw,b_? - 1-1 2-2 

and the first time-derivative of - H in A can be expressed as 

- BdH - AdH 
+ w x H  - - - 

dt - - dt (1.11.8) 

= [Ikl + (J - I)@ 2 w 3 lb -1 + [Ik2 - (J - I)w 3 w 1-2 lb + J6&3 (d 
(C) 

Hence, if B moves under the action of forces the sum. of whose moments 
* 

about B is equal to zero, and if A is an inertial ref rence frame, so 
'dH - 

that, in accordance with the angular momentum principle, dt is equal 
to zero, then w 

equations 

w2 , and w3 are governed by the differential 1 '  

0 I - J  
w -- 1 I w2w3 =e 
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e 

w3 = 0 

Letting 75 denote the value of wi (i =i 1,2,3) at t = 0 , i 
and defining a constant s as 

A I - J -  6 ' -  
I '  w3 

one can express the general solution of Eqs. (e) - (g) as 

- 
w1 = w1 cos st + O2 sin st 

- 
w2 = -a1 sin st +W2 cos st 

- 
w3 = @3 

and, to determine the orientation of B in A , one then can seek the 
solution of the differential equations 

. 1 - 
El(;) 'z 

1 - - [ G1 cos st + O2 sin st)E 2 4 + El sin st - w2 cos st)E3 + C i 3 ~ 2 ]  ( 2 )  

' W E )  
1 

(%"3 ' 2 " 4  3 1 

- 1 - 
7 [Gl cos st + W sin st)E3 - Gil sin st - w2 cos t)E4 - w E I (m) 2 3 1  

plus two more differential equations of the same form, using as initial 

conditions 
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E = E  = o ,  ~ ~ " 1  at t = O  1 2 = € 3  

which means that the unit vectors gl , g2 , and a have been 

chosen such that a+ = b (i = 1,2,3) at t = 0 . 
Since the differential equations governing 

-3 

i 

cl , ... , c4 have 

time-dependent coefficients, they cannot be solved by simple analytical 

procedures. However, attacking the physical problem at hand by a 

different method (see Sec. ), and defining a quantity p as 

p [El2 + w22 + G3 J/I) 2 l  1" 

c2 , c3 , and c4 are given by 1' one can show that E 

Cst/2)3 

tst/2)1 

) sin (st, 2) 

c4 = -7ij30/~p) sin (pt/2) sin b t / 2 )  + cos (pt/2) cos bt/2) 

and it may be verified that these expressions do, indeed, satisfy the 

differential equations governing as well as the initial 

conditions stated in Eqs .  (n). 

, ... , c4 
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1.14 Angular velocity and Rodrigues parameters 

If a13 52, s3 and bl, h2, b3 are two dextral sets of orthogonal 

unit vectors fixed respectively in reference frames or rigid bodies 

B which are moving relative to each other, one can use Eqs. (1.4.9) to 

A and 

associate with each instant of time Rodgrigues parameters pl, p2, and Pg; 

and a Rodrigues vector p can then be formed by reference to Eq. (1.4.2). 

The angular velocity of B in A (see Sec. l.ll), expressed in terms of p,  

is given by 

Conversely, if 2 is known as a function of time, the Rodrigues parameters 

can be found by solving the differential equation 

Equations equivalent to Eqs. (1) and (2) can be formulated in terms of 
N matrices w, p, and p defined as 

and 
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0 
n ' F -  I:: -3 

0 

These equations are 

2b(U + p) 
W "  

1 + ppT 

-;:I 0 (5) 

and 

r; = - 1 w (U - ; + p T p )  (7) 
2 

Like its counterparts for the direction cosine matrix and for Euler param- 

eters (see Eqs. (l.1Oe3) and (1.13.8), Eq. (7) is in general an equation 

with variable coefficients. Since it is, moreover, nonlinear, one must 

usually resort t o  numerical methods to obtain solutions. 

Derivations: Using Eqs. (1.3.1), (1.3.3), and (L4*1), one can express 

E and E as 4 - 

and 
2 -112 

E 4 =  ( l + . Q )  

respectively. Consequently, 
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and 

r 

which is equivalent to Eq. (1). 

Cross-multiplication of Eq. (1) with ,P yields 

while dot-multiplication produces 

Consequent ly 

in agreement with Eq. (2). 
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The v a l i d i t y  of Eqs. ( 6 )  and (7) may be v e r i f i e d  by car ry ing  out the  

ind ica ted  matr ix  mul t ip l i ca t ions  and then comparing the  s c a l a r  equations 

corresponding t o  the  matrix equations with the  s c a l a r  equations corresponding 

t o  E q s .  (1) and (2). 

Example: The "spin-up" problem f o r  an a x i a l l y  symmetric s a t e l l i t e  B can 

be formulated most simply as follows: Taking the  a x i s  of revolu t ion  of the  

i n e r t i a  e l l i p s o i d  of B f o r  t he  mass center  B* of B p a r a l l e l  t o  k3, assuming 

t h a t  B i s  subjected t o  t h e  a c t i o n  of a system of forces  whose r e s u l t a n t  mo- 

ment about B* is  equal t o  M L 3 ,  where M i s  a constant ,  and l e t t i n g  wl, w2s 

and w3 have the  values  

a t  t i m e  t = 0,  determine the  o r i e n t a t i o n  of B i n  an i n e r t i a l  reference frame 

A fo r  t > 0. (The reason f o r  taking w2 equal  t o  zero a t  t = 0 i s  t h a t  

is perpen- t h e  u n i t  vec tors  

d i c u l a r  t o  2 a t  t = 0, i n  which case w = w b2 = 0. As f o r  w3, t h i s  

is taken equal  t o  zero  a t  

e i t h e r  no r o t a t i o n a l  motion o r  t o  be tumbling i n i t i a l l y ,  tumbling here  re- 

f e r r i n g  t o  a motion such t h a t  the  angular v e l o c i t y  i s  perpendicular t o  the  

symmetry axis .  ) 

k2 and b can always be chosen such t h a t  % -2 

2 

t = 0 because the  s a t e l l i t e  i s  presumed t o  have 

Le t t ing  L denote the  iner t ia  dyadic of B f o r  B*, and def in ing  I 

and 3 as 

(b) 
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and 

J Q L 3 ' I * L 3  (c) 

one can use the  angular momentum p r i n c i p l e  t o  obta in  the  following d i f f e ren -  

t i a l  equations governing wl, w2, and w3: 

5 = -  w w  
1 I 2 3  

- s - J w w  & 2 - - -  I 3 1  

Stnce M and J are cons tan ts ,  

E= M-t J 

and 

The so lu t ion  of these  equations is f a c i l i t a t e d  by introducing a func t ion  

er as 
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Then 

or 

so that  

and 

dw2 - - e  

(1) de 

w1 = C s i n  9 + C cos @ 1 2 

= C1 cos @ - C s i n  @ 2 
w2 (m,p) 

where C1 and C2 are constants which can be evaluated by noting that 

@ ( see  Eq. ( j ) )  vanishes at t = 0. That i s ,  
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and 

Consequently 

and 

Equations governing t h e  Rodrigues parameters pl, p2, and P can 

now be  formulated by r e f e r r i n g  t o  Eqs. ( 3 ) ,  (4), (5), and (7) t o  ob ta in  

3 

and, i f  sl, a 3 and a are chosen such t h a t  a = b (i = 1,2,3) -2 -3 1 - i  

a t  t = 0, then pl, 02* and p3 must s a t i s f y  the  i n i t i a l  condi t ions  

Pi(0) = 0 (i = 1,2,3) (Y 1 

a x i s  

t h i s  

Suppose now t h a t  one wishes t o  s tudy  t h e  behavior  of t h e  symmetry 

of B ,  s ay  f o r  0 5 wlt 10.0, by p l o t t i n g  t h e  angle  6 between 

axis and t h e  l i n e  f i x e d  i n  A wi th  which the  symmetry a x i s  co inc ides  
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- 2  
1 i n i t i a l l y .  Once the  dimensionless parameters J/I and M / J u  have 

been spec i f i ed ,  p l ,  p2, and p 3  can be evaluated by in t eg ra t ing  

Eqs. (v) - (x) numerically,  and 8 is  then given by 

2 - P2* + P 2 
3 

1 - P  - - 1 
c33 - 2 2 

+ p3 

8 = a r c  cos (g3 k3) - 
(1.2.2, 1.2.3) (1.4.4) 1 + Q12 + P 2 

Table 1 shows values  of p l y  p2, o and 8 obtained i n  t h i s  way 

f o r  J/I = 0.5 and M/Jwl  = 0.1. The l a r g e s t  value of L l t  appearing 

i n  the  t a b l e  i s  3.0, r a t h e r  than 10.0, because during in t eg ra t ion  from 

3 
- 2  - 

3.0 t o  3.5 the  values of plr p2, and p became so large t h a t  the  

in t eg ra t ion  could not  be continued. To overcome t h i s  obs tac le ,  Eqs. (v) - 
3 

(2) were replaced wi th  ( see  Eqs. (1.13.8)) 

M - 
2i1 = w cos pi E + w s i n  pi c3 + J t c 2  1 4 1  

M - - 
4 - T t E l  2 i 2  = w1 cos gj E - u s i n  pi E 3 1  

M - - 
cos gj - E - w s i n  pi c l  + 5 t e4 1 2 1  2i3 =-w 

and 

e =  a r c  cos (1 - 2E1 - 2c2 
(1.3.14) 
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Table 1 

- 
0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

pl 

0.00 

0.26 

0.55 

0.93 

1.56 

3.06 

16.94 

- p2 

0.00 

-0.00 

-0.01 

-0.04 

-0.11 

-0.33 

-2.69 

0.00 

0.00 

0.03 

0.06 

0.13 

0.27 

1.41 

0 

29 

57 

86 

115 

143 

169 

respectively, and a numerical integration of these equations, performed 

without difficulty because produced the 

values listed in Table 2. These results not only permit one to plot 0 

versus ult, as has been done in Fig. 1.14.1, but they fndicate quite 

clearly why the numerical solution of Eqs. (v) - (x) could not proceed 
smoothly: E4 changes sign between u t = 3.0 and t = 3.5, and 

wit = 8.5 and w t = 9.0, whereas ci(i = 1,2,3) do again between 

not change sign in these intervals. Hence E vanishes at two points 

at which ci(i = 1,2,3) do not vanish, and since 

-1 <, ci 5 1 (i = 1, ..., 4), 
- 

- 
1 1 - - 

1 

4 

E ,  
1 (i = 1,2,3) - - - 
4 

pi E 
(1.4.3) 

the Rodrigues parameters become infinite at these two points. 
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Figure 1.14.1 
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Table 2 

- 
w t  1 

0.0 

0.5 

1.0 

1.5 

2.0 

2.5 

3.0 

3.5 

4.0 

i 4.5 

5.0 

5.5 1 
1 

I 
i I 

! 6.0 \ 
6.5 j 

i 
I 

7.0 
/ j 7.5 
! 

i 8.0 ! 
i 

’ 8.5 

9.0 

’ 9.5 
1 
i 10.0 I 

1 € 

0.00 

0.25 

0.48 

0.68 

0.84 

0.94 

0.98 

0.96 

0.86 

0.71 

0.50 

0.26 

0.02 

-0.22 

-0.42 

-0.55 

-0.61 

-0.59 

€2  

0.00 

0.00 

-0.01 

-0.03 

-0.06 

-0.10 

-0.16 

-0.21 

-0.26 

-0.30 

-0.30 

-0.26 

-0.17 

-0.04 

0.13 

0.33 

0.53 

0.71 

-0.49 I 0.84 

-0.33 

-0.13 

0.90 

0.86 
i , 

3 
0.00 

0.01 

0.02 

0.05 

0.07 

0.08 

0.08 

0.06 

0.00 

-0.01 

-0.18 

-0.30 

-0.41 

-0.51 

-0.57 

-0.58 

-0.51 

-0.37 

-0.17 

0.09 

0.36 

E €4 
0.00 

0.97 

0.88 

0.73 

0.54 

0.31 

0.06 

-0.20 

-0.43 

-0.64 

-0.79 

-0.88 

-0.89 

-0.83 

-0.70 

-0.50 

-0.28 

-0.06 

0.14 

0.28 

0.34 

@(deg) 

0 

29 

57 

86 

115 

143 

169 

157 

129 

100 

72 

44 

20 

26 

52 

80 

108 

136 

155 

146 

120 
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1.15 Indirect determination of angular velocity 

When a rigid body B can be observed from a vantage point fixed 

in a reference frame A, the angular velocity 2 

mined by using Eq. (1.11.4). If observations permitting such a direct 

evaluation of cannot be made, it may, nevertheless, be possible to 

find 2. This is the case, for example, when two vectors, say E and 

of B in A can be deter- 

a9 
one fixed in B, for can then be found by using the relationship 

can each be observed from a vantage point fixed in A as well as from 

To carry out the algebraic operations indicated in this equation, one 

must be able to express all vectors in a common basis. This can be 

accomplished by using Eq. (1.2.9) after forming a direction cosine 

matrix by reference to Eq. (1.5.3). 

Derivation: From Eq. (1.11.8), 

and 

- - - = I d  d t  dt - x 9  
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Hence 

I (k - - -  B:) * g w + O  

and, solving for 2, one arrives at Eq. (1). 

Example: Observations of two stars, P and Q, are made simul- 

taneously from two space vehicles, A and B, these observations consisting 

of measuring the angles fl and JI shown in Fig. 1.15.1, where 0 repre- 

sents either a point fixed in A or a point fixed in B, R is either P or 

Q, and cl, g2, 
fixed either in A or in B. 

are orthogonal unit vectors forming adextral set 

For a certain instant, the angles and their first time-derivatives 

are found to have the values shown in Table 1. 

of B in A at that instant is to be determined. 

The angular velocity 

The situation under consideration is the same as that discussed in 

the Example in Sec. 1.5. Hence, if 5 is any vector and *v and Bv 

- 138- 



1.15 

Figure 1.15.1 
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Table 1 

are row mat r ices  having a and 

then  

-i 

V 
A Bv = 

(1.2.9) 

v b (i = 1,2,3) as elements,  i - 

:I 0 0  

0 1  

-1 0 0 

Furthermore, i f  i s  aga in  def ined  as a u n i t  vec to r  d i r e c t e d  from 0 

toward R (see Fig. 1.15.1), then 

R = cos Jr cos @ c - -1 -3 4- cos \Ir s i n  @ L~ + s i n  Jr c 

and the  f irst  t ime-der iva t ive  of i s  a r e fe rence  frame C i n  which 

cl, z2, and g3 a r e  f i x e d  i s  given by 

- ( s i n  ~r s i n  $ - cos 9 cos  @ i)s2 
+ cos * s, g3 
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Consequently, l e t t i n g  E and CJ, be u n i t  vec to r s  d i r e c t e d  from 0 

toward P and Q r e spec t ive ly ,  and r e f e r r i n g  t o  Table 1 ,  one can ex- 

p res s  the  t ime-der iva t ives  of E and g i n  A as 

and 

Next, use of Eq. (c) permits  one t o  express  these  d e r i v a t i v e s  i n  terms 

of bl, h2¶ and h3¶ as ind ica t ed  i n  l ines 1 and 2 of Table 2; and 

l i n e s  3 and 4 a r e  formed s i m i l a r l y .  Lines  5, 6 ,  and 7 can then be 

formed by pure ly  a l g e b r a i c  opera t ions ,  and the  scalar product appearing 

i n  t h e  denominator of the  right-hand member of Eq. (1) is g iven  by (see 

l i n e  2 of Table 2 i n  t h e  Example i n  Sec. 1.5) 

Consequently 

= 5k2 + k3 rad/sec.  
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L i n e  

Table 2 

Vectors  appearing i n  Eq. (1) 

Vector  

d t  

B 
- 

d t  

- - -  
d t  d t  

- - -  
d t  d t  

b -1 

1 
2 a-- 

0 

3 6  - -  
2 

5 6  1 - - -  
2 2  

0 

b -2 

a - -  
2 

0 

0 

0 

fi - -  
2 

0 

5a 5& 
2 (T - i) 

b -3 

0 

3a - -  
2 

0 

0 
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1.16 Auxiliary reference frames 

The angular velocity of a rigid body B in a reference frame A 

(see Sec. 1.11) can be expressed in the following form involving n 

auxiliary reference frames A1, ..., A : n 

A B  n A A  n-1 n A A  
w + w  - - A + lu + ... + A B  - w = w  - - 

This relationship is particularly useful when each term in the right- 

hand member represents the angular velocity of a body performing a 

motion of simple rotation (see Sec. 1.1) and can, therefore, be expressed 

as in Eq. (1.11.5). 

Derivation: For any vector fixed in B ,  

and 

so that 

A 
A B  - Ids 

x - - 
dt (1.11.9) 

- - A d s  - 
dt (1.11.8) 

A 
Id2 
dt 
- A Al 

+ E  x c  

-143- 



1.16 

o r ,  s i n c e  t h i s  equat ion  i s  s a t i s f i e d  f o r  every 2 f i x e d  i n  B ,  

A A1 A1 B 
w + w  

A B  - - w =  - 

which shows t h a t  Eq. (1) is valid f o r  n = 1. Proceeding s i m i l a r l y ,  

one can v e r i f y  t h a t  

A I B  A A  A 2 B  
- w =  ? A 2 +  - - w 

and s u b s t i t u t i o n  i n t o  Eq. (e) then  y i e l d s  

- - w 
A B  - w =  - 

which i s  Eq. (1) f o r  n = 2. The v a l i d i t y  of Eq. (1) f o r  any va lue  of 

n can thus  be e s t a b l i s h e d  by applying t h i s  procedure a s u f f i c i e n t  number 

of times. 

Example: I n  Fig.  1.16.1, 8 ,  @, and $ des igna te  angles  used t o  

desc r ibe  t h e  o r i e n t a t i o n  of a r i g i d  cone B i n  a r e fe rence  frame A. These 

angles  are formed by l i n e s  descr ibed  as follows: Ll and L2 are per-  

pendicular  t o  each o the r  and f ixed  i n  i s  t h e  a x i s  of symmetry of 

B; L i s  perpendicular  t o  L2 and i n t e r s e c t s  L2 and L3; L5 i s  per-  

pendicular  t o  L3 and f i x e d  i n  B; and L7 i s  perpendicular  t o  

and L4. To f i n d  the  angular  v e l o c i t y  of B i n  A ,  one can des igna te  

as Al a re fe rence  frame i n  which L2, L4 and L7 a r e  f ixed ,  and as 

A2 a re fe rence  frame i n  which L3, L5, and L7 are f ixed ,  observing 

A; Lg 

4 

L2 
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Figure 1.16.1 
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that  L2 i s  then f ixed  both i n  A and A1, L7 is  f ixed  both i n  A1 

and A2, and L3 i s  f ixed  both i n  A2 and B ,  so that ,  i n  accordance 

with Eq. (1.11.5), 

where &21 L3, and L7 are un i t  vectors  d irected as  shown i n  Fig.  1.16.1. 

It then fo l lows  immediately that: 

- 146 - 



1.17 

1.17 Angular velocity and orientation angles 

When the orientation of a rigid body B in a reference frame A 

is described by specifying the time dependence of orientation angles 

el, e,, and Q3 (see Sec. 1.7), the angular velocity of B in A 

(see Sec. 1.11) can be found by using the relationship 

where M is a 3 X 3 matrix whose elements are functions of el, e2, 
and Q3. Conversely, if wl, w2, and a3 are known as functions of 

time, then e2, and G3 can be evaluated by solving the differen- 

tial equations 

For space-three-vector angles, the matrices M and M - 1  are 

M =  

and 

1 

0 

2 -S 

0 

1 

s c  

C 

1 2  

-s 1 

c1c2 O 1  

1 S c1c2 s s  1 = - 
1 2  c2 

-s  c p 2  1 2 c1 

(3)  

(4) 
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For body-three-vector angles, 

M =  

and 

For space-two-vector angles, 

M =  

and 

c c  2 3  

3 S 

0 

c3 

-s3 

0 

1 

0 

c2 

-c s 2 3  

c3 

0 

'2'3 

'2'3 

0 

0 

1 

1 2  

C 

s s  

2 S 

0 

1 

0 

-sl] 

c1s2 

0 0 2 
S 

-1 1 

2 
M = -  

S 

(7) 

Finally, for body-two-vector angles, 
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M =  

and 

2 C 

0 

1 

s s  2 3  

c3 

0 

0 

s c  2 3  

-s  s 2 3  

'2'3 

-3 

0 

-'2'3 

-c c s2 2 3  1 
(9) 

When c2 vanishes, M as given by Eq. (3) or by Eq, (5) is a 

singular matrix, and M-l is thus undefined. Hence, given w2, 
and w3 one cannot use Eq. (2) to determine bl, h,, and b3 if 

el, Q2, and O3 are three-vector angles and c2 = 0. Similarly, if 

el, B2, and e3 are two-vector angles, Eq. (2) involves an undefined 

matrix when s is equal to zero. 2 

When the angles and unit vectors employed in an analysis are de- 

noted by symbols other than those used in connection with Eqs. (1) - 
(LO), appropriate replacements for these equations can be obtained 

directly from Eqs. (1) - (10) whenever the angles have been identified 
as regards type, that is, as being space-three-vector angles, body- 

three-vector angles, etc. Suppose, for example, that in the course of 

an analysis involving the cone shown in Fig. 1.16.1, and previously 

considered in the Example in Sec. 1.16, unit vectors b b and %, 
fixed in B as shown in Fig. 1.17.1, have been introduced, and it is 

-x' Y 

now desired to find wx, w and %, defined as 
Y1 
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Figure 1.17.1 
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where g denotes the angular velocity of B in A. This can be done 

easily by regarding PJ, 8 ,  and 'JI as body-two-vector angles, that is, 

by introducing unit vectors 

fining kIa b2, and k3 as 

al, z2, s3 as shown in Fig. 1.17.1, de- 

and taking 

el = 9, e2 = -e, e3 = -Jr 

For it then follows imediately from Eqs. (1) and ( 9 )  that 

so that 

cos 8 sin 8 sin $ -sin 8 cos q 

0 cos Jr sin If 

1 0 0 

. 
w = -5 sin e cos ~r - e sin JI 

X 

= > c O s e - $  
Y 

w = 3 sin e sin ~r - i cos JI z 
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Derivations : From Eqs. (1.10.5) and (1.7.1) 

d w = (c s c + s s ) - (SlS2C3 - s c ) 1 1 2 3  3 1  dt 3 1  

d + (c1s2s3 - c 3 s 1 ) - dt (SlS2S3 -t c3c1) 

Similarly, from Eqs. (1.10.6) and (1.7.1) 

w =a2c1 + &  s c 2 3 1 2  

and from Eqs. (1.10.7) and (1-7.1) 

= - + ii c c w3 3 1 2  

These three equations are the three scalar equations corresponding to 

Eq. (1) when M is given by Eq. (3). 

Eq. (2) follows from Eq. (1) and from the definition of the in- 

verse of a matrix; and the validity of Eq. ( 4 )  may be established by 

noting that the product of the right-hand members of Eqs. (3) and ( 4 )  

is equal to U, the unit matrix. Proceeding similarly, but using 

Eq. (1.7.11), (1.7.21), or (1.7.31) in place of Eq. (1.7.1), and Eqs. 

(5) and ( 6 ) ,  Eqs. (7) and (8) , or Eqs. (9) and (10) in place of Eqs. 
(3) and ( 4 ) ,  one can demonstrate the validity of Eqs. (5) - (10). 

Example: Fig. 1.17.2 shows the gyroscopic system previously dis- 

cussed in Sec. 1.7, where it was mentioned that one may wish to employ 
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Figure 1.17.2 
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space-three-vector angles p’l, g2, and as well as the body-two- 

vector angles el, e2, and e3 shown in Fig. 1.17.2, when analyzing 

motions during which Q2 becomes small or equal to zero. Given 

and bi (i = 1,2,3), 

(i = 1,2,3). 

‘i 

and gji 
. 

p’i one must then be able to evaluate 

‘Suppose that, as in the Example in Sec. 1.7, el = 30°, e2 = 45” ,  

and 0, = 60” at a certain instant and that, furthermore bl = 1.00, 

b2 = 2.00, 8, = 3.00 rad/sec. What are the value of >,, ;d2, and 2, 
at this instant? 

From Eqs. (2) and ( 4 ) ,  

sin @ 

2 cos p’ 

sin g sin @ 1 

cos pi sin g2 -sin g cos p’ cos p’ 1 1 2 

0 

cos g1 cos g2 2 ri, i, a,] = 

or, using the values of gjl and found previously, 2 

0.791 0 

rb, b2 i,] = 0.791 0.603 -0.138 

-0.107 -0.780 -0.174 

Now, from Eqs. (1) and (9), 
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i s i n  8 cos e3 3 2 cos e2 s i n  Q2 s i n  8 

- s i n  8 3 0 COS e2 

1 0 0 

L w 1  w2 w 3 I = [‘el. i2 h31 

0.707 0,612 0.354 

= L1.00 2.00 3.001 [ ,.TO - 0 . 7 1  

[3.707 1.612 -1.3781 

Hence 

0 

3.707 1.612 -1.3783 [ O o 7 ”  o.603 -o.138 0.1851 [i, i, a31 = E 0.791 

-0.107 -0.780 -0.174 

= L5.12 1.08 2.411 

and 

= 2.41 rad/sec. 4 = 5.12, $2 = 1.08, 
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1.18 Slow, small r o t a t i o n a l  motions 

If 21, a22 23 and ! L I S  -23 b -3 b are two d e x t r a l  s e t s  of or- 

thogonal u n i t  vec tors  fixed respec t ive ly  i n  reference frames o r  r i g i d  

bodies A and B which a re  moving r e l a t i v e  t o  each o ther ,  one can 

use E q s ,  (1.3.18) and (1.3.20) t o  a s soc ia t e  with each i n s t a n t  of time 

an qngle 8 ,  and the  motion i s  c a l l e d  a slow, small r o t a t i o n a l  motion 

when a l l  terms of second or  higher degree i n  8 and b play a neg l i -  

g i b l e  r o l e  i n  an ana lys i s  of the  motion. Under these circumstances, a 

number of t he  r e l a t ionsh ips  discussed previously can be replaced with 

simpler ones. Spec i f i ca l ly ,  i n  place of E q s .  (1.13.1) and (1.13.3) 

one may then use 

Bdz 
w = 2 -  

d t  - 

and 

E4 = 1 

E q s .  (1.14.1) and (1.14.2) can be replaced with 

Bd_p 
w = 2 -  d t  - 

and, i f  el, 02, and e3 a r e  chosen such t h a t  terms of second or  

higher degree i n  ei and/or e . ( i , j  = 1,2 ,3)  are negl ig ib le ,  then 
J 

Eq. (1.7.1) together with Eq. (1.17.3) o r  Eq. (1.17.5) leads t o  

(3) 

IW1 w2 w 3 1 = [il i2 i31 (4) 
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which shows that it does not matter whether one uses space-three- 

vector angles or body-three-vector angles when dealing with small, 

slow rotational motions. 

Derivations: From Eqs. (1.8.3) and (1.8.4) 

E = -  h d  - 2 -  

and 

E 
4 

Hence 

and, substituting into Eq. (1.13.1) and retaining only terms of first 

degree in 8 and b,  one obtains 

w = 2  - 
B dP ' 2 (T Bdb+p ')I = 2 -  dt 

in agreement with Eq. (1). Eq. (2) is the same as Eq. (1.8.4). 

Eq. (3)  follows immediately from Eq. (l), since p and - E are 

equal to each other to the order of approximation under consideration, 

as is apparent from Eqs. (1.8.3) and (1.8.5). Finally, Eq. (4) re- 

sults from substituting M as given in Eq. (1.17.3) or (1.17.5) into 

Eq. (1.17.1) and then dropping all nonlinear terms. 
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Example: In Fig. 1.18.1, B designates a rigid body that is 

attached by means of elastic supports to a space vehicle A which is 

moving in such a way that the angular velocity NgA of A in a new- 

tonian reference frame N is given by 

where all a2, a3 are constants and gl, g2¶ a form a dextral set of -3 

orthogonal unit vectors fixed in A. Point B* is the mass center of 

B, and kl, k2, k3 are unit vectors parallel to principal axes of iner- 

tia of B for E*, the associated moments of inertia having the values 

12, and . 5’ I 3  

In preparation for the formulation of equations of motion of B, 

the first time-derivative, in N, of the angular momentum of B 

relative to B* in N is to be determined, assuming that all rotational 

motions of E in A are s low,  smallmotions. The orientation of B in 

A is to be described in terms of body-three-vector angles ell €I2, and 

e3, all of which vanish when a = b. (i = 1,2 ,3) .  
i - l  

The angular velocity ‘2 of B in N can be expressed as 

+ - - N E  - w - 
(1.16.1) 

Referring to Eqs. (1.2.5) and (1.8.12), one can write 
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/" 

Figure 1.18.1 
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and, from Eq. (4) 

Hence 

+(a - a e  + a e ) b  2 3 1  1 3 - 2  

+ (a3 - ale2 + a 8 )b 
2 1 -3 

*wB = 5 b + 8 b + h3k3 1-1 2-2 - 

and 

- a2e3 + a  e + B )b + ... - H = Il(al 3 2  1-1 
(e) 

To evaluate the first time-derivative of in N, it is convenient to 

use the relationship 

with 
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where, however, all nonlinear terms are to be dropped p r i o r  to sub- 

stituting from Eq. (i) into Eq. (g). Thus one finds that 
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1.19 Instantaneous a x i s  

A t  an i n s t a n t  a t  which the  angular ve loc i ty  - w of a r i g i d  body 

B i n  a re ference  frame A ( see  Sec. 1.11) is equal t o  zero,  the  

v e l o c i t i e s  of a l l  points  of B i n  A a r e  equal  t o  each other.  When- 

ever is not  equal t o  zero,  t he re  e x i s t  i n f i n i t e l y  many po in t s  of 

B whose ve loc i ty  i n  A is  p a r a l l e l  t o  2 or  equal  t o  zero. These 

points  a l l  have the  same ve loc i ty  I* i n  A and they form a s t r a i g h t  

l ine p a r a l l e l  t o  and c a l l e d  the  instantaneous axis of B i n  A. 

The magnitude of x* is  smaller  than the  magnitude of the  ve loc i ty  i n  

A of any poin t  of B not ly ing  on the instantaneous axis .  

I f  xQ is the  ve loc i ty  i n  A of an a r b i t r a r i l y  se l ec t ed  base- 

po in t  Q of B, and P* is a point  of t he  instantaneous axis, then 

the  pos i t i on  vec tor  L* of P* r e l a t i v e  t o  Q can be expressed as 

where v* depends on the  choice of P*; and I* i s  given by 

v* = w - 2 -  
w - 

Derivation: I n  Fig. 1.19.1, both P and Q a r e  a r b i t r a r i l y  

se l ec t ed  points  of B y  E and g a r e  t h e i r  respec t ive  pos i t i on  

vec tors  r e l a t i v e  t o  a poin t  0 t h a t  i s  f ixed  i n  A, and i s  the  

pos i t i on  vector  of P r e l a t i v e  t o  Q. Hence 
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Figure 1.19.1 
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and 

o r ,  s ince  the  v e l o c i t i e s  1’ and vQ of P and Q i n  A a r e  

equal  t o  *dE/dt and Ads la t ,  

If g # 0, the  vec tor  g can always be expressed as the  sum of 

a vec tor ,  say g ,  t h a t  i s  perpendicular t o  g, and the  vector  ps, 

where p is a c e r t a i n  scalar; t h a t  is 

with 

P Consequently, 1 can be expressed as 

and 
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I f  P i s  now taken t o  be a p o i n t  P* whose v e l o c i t y  I* i n  A 

i s  p a r a l l e l  t o  g, and the  a s soc ia t ed  va lues  of r, E, and p are 

c a l l e d  L*, g*¶ and y*, then 

Q 
W X X  

i n  agreement wi th  Eq. (l), and 

i n  agreement wi th  Eq. (2). 

Example: I n  Fig. 1.19.2, B r ep resen t s  a s lowly sp inning  

c y l i n d r i c a l  s a t e l l i t e  whose mass cen te r  B* moves on a c i r c u l a r  

o r b i t  of r ad ius  R f i x e d  i n  a r e fe rence  frame A. Throughout t h i s  

motion t h e  symmetry a x i s  of B is cons t ra ined  t o  remain tangent  

t o  the  c i rc le  whi le  B rotates about t h i s  a x i s  at a cons tan t  rate 

such t h a t  a plane f i x e d  i n  B and passing through t h e  a x i s  becomes 
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Figure 1.19.2 
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parallel to the orbit plane twice during each orbital revolution of 

B*. The instantaneous axis of E in A is to be located for a typical 

instant during the motion. 

Letting A* be the center to the circle on which B* moves, and 

designating as C a reference in which the normal to the circle at A* 

and the line joining A* to B* are both fixed, one can express the 

angular velocity of B in A as 

- w = - + c; 
(1.12.1) 

Furthermore, if R denotes the rate at which the line joining A* to 

B* rotates in A, then 

A C  - - w - 52 52 
(1.11.5) 

and 

21 - C B  w 
(1.11.5) 

and c are unit vectors directed as in Fig. 1.19.2. 51 -2 where 

Hence 

B* 
The velocity of B* in A is given by 
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B* - v =mc1 

Consequently, i f  P* i s  a po in t  on the  instantaneous axis of B i n  

A, then t h e  p o s i t i o n  vec to r  E* of W r e l a t i v e  t o  B* is given by 

Hence t h e  instantaneous axis of B i n  A passes  through t h e  midpoint 

of t h e  l i n e  jo in ing  A* t o  B*, i s  perpendicular  t o  c3, and makes 

a f o r t y - f i v e  degree ang le  wi th  each of c and g2, as ind ica t ed  i n  

Fig. 1.19.2. 

-1 
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1.20 Angular acceleration 

The angular acceleration _a of a rigid body B in a reference 

frame A is defined as the first time-derivative in A of the angular 

velocity g of B in A (see Sec. 1.11): 

Adg 
- dt 
a 4 -  

Frequently it is convenient to resolve both (L' and g into 

components parallel to unit vectors fixed in a reference frame C, 

that is, to express 2 and Q: as 

C C C 
w = U1C1 + w 2 2  c + w3c3 

and 
C C 

I a = cap1 + ap2 + a3c3 

where c c , c is a dextral set of orthogonal unit vectors. When 

this is done, 

-1 -2 -3 

where Q is the angular velocity of C in A. In other wcxds, 

may, or may not, be equal C 
ai depending on the motion of C in A, 

to w . C. 
i 

Derivations: Using Eq. (l.ll.S),one can express ,a as 
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C 

Consequently, when g is expressed as in Eq. (3), then 

C. C C. C. C. algl 4- a2g2 + a3c3 = w i-i c + w2g2 + w 3-3 c 4- ;2 x w 

and dot-multiplication with c (i = 1,2,3) gives -i 

Example: Fig. 1.20.1 depicts the system previously considered 

in the Example in Sec. 1.12. In addition t o  the unit vectors used 

are shown, and 23 previously, orthogonal unit vectors c1, L ~ ,  and 

a reference frame C, in which these are fixed, is indicated. Con- 

sidering only motions such that $ and i ,  as well as e, remain 
A B  C constant, the quantities ai, ai and 

determined, these being defined as 

(i = 1,2,3) are to be ai 

B A  c n  A a q,  ai = 2 bi, ai = a c (i = 1,2,3) (a) i ai - - 

where g is the angular acceleration of B in A. - 
The angular velocity 2 of B in A can be expressed as 
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a -1 

Figure 1.20.1 
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or as 

or  as 

Using Eq. ( 4 ) ,  w i t h  C rep laced  by A ,  and hence c = 0, one 

ob ta ins  by r e fe rence  t o  Eq. (b) 

S i m i l a r l y ,  wi th  C rep laced  by B i n  Eq. ( 4 ) ,  s o  t h a t  = 2, 

Eq. (c) permits  one t o  w r i t e  

F i n a l l y ,  w i t h  
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so t h a t  

i t  fol lows from Eq. ( 4 )  toge ther  wi th  Eqs. (d) and (,e) t h a t  

C 
= -  (i -I- ;L( ce) + ;+ se z3 - c1 = 0 al d t  

and 

every one of the  q u a n t i t i e s  def ined C 
a3, Thus, w i th  t h e  except ion of 

i n  Eqs. (a) i s  equal  t o  the  time d e r i v a t i v e  of the  corresponding angular  

v e l o c i t y  measure number. 
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